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EMBEDDING THEOREMS ON THE FRACTIONAL

ORLICZ-SOBOLEV SPACES

Tacksun Jung† and Q-Heung Choi∗,‡

Abstract. In this paper we deal with the embedding inclusions on the fractional
Orlicz-Sobolev spaces which are crucial roles for studying the theories of the par-
tial differential equations. We get some properties and theories of the embedding
inclusions on the fractional Orlicz-Sobolev spaces.

1. Introduction and preliminary

Let Ω be a bounded domain of RN with smooth boundary ∂Ω, s ∈ (0, 1) and
p : Ω × Ω → (1,∞) be a continuous function. The fractional Sobolev spaces with
variable exponent p(x, y) are defined as:

W s,p(x,y)(Ω) = {u ∈ Lp(x,y)(Ω)|
∫

Ω

∫
Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dxdy <∞, for some λ > 0}

endowed with the norm

‖u‖s,p(x,y) = inf{λ > 0|
∫

Ω

∫
Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dxdy ≤ 1}.

In this paper, we are trying to relax the growth condition on W s,p(x,y) and deal with
more generalized spaces on the growth condition than the fractional Sobolev spaces.
When we are trying to relax the growth conditions, we can not formulate with the
fractional Lebesgue spaces and the fractional Sobolev spaces W s,p. We adopt the frac-
tional Orlicz spaces with variable exponent and the fractional Orlicz-Sobolev spaces
with variable exponent as the adequate function spaces. We refer the readers to [4, 9]
and the references therein for the theory of Orlicz and Orlicz-Sobolev spaces. We also
refer the readers to [2, 10] for some results about the fractional Orlicz-Sobolev spaces
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and the fractional N-Laplacian operator. In [3], the authors provide the connection
between the fractional order theories and the Orlicz-Sobolev ones, and define the
fractional order Orlicz-Sobolev space associated to a Young function and a fractional
parameter.

In this paper, we investigate some properties and theories for the fractional Or-
licz space, the fractional Orlicz-Sobolev space and the embedding inclusions on the
fractional Orlicz-Sobolev spaces.

In last years, the fractional Sobolev space and the corresponding fractional Laplace
operators with variable exponent of elliptic type have been interested and researched
by some mathematicians for pure mathematical research and concrete real-world ap-
plications (cf, [9], [7], [9], [12]). These problems arise in applications of natural science,
for example, nonlinear elasticity theory, electro rheological fluids, non-Newtonian fluid
theory in a porous medium and image processing (cf. [3], [10], [13]).

To state main results we need some notations.
Let h be an odd and increasing homeomorphism from R onto R and let H be the

function defined by

H(x) =

∫ x

0

h(t)dt for all x ∈ R.

Then H is a Young function and also a N-function (We call that H is a Young function
if H(0) = 0, limx→+∞H(x) = +∞ and H is convex, and we call that H is a N-function

if H satisfies that H(x) = 0 if and only if x = 0, limx→0
H(x)
x

= 0, limx→∞
H(x)
x

= +∞).
Let H∗ be the function defined by

H∗(x) =

∫ x

0

h−1(t)dt for all x ∈ R.

The function H∗ is called the complementary function of H and satisfies

H∗(x) = sup{yx−H(y)| y ≥ 0} for all x ≥ 0.

Then H∗ satisfies that

lim
x→0

H∗(x)

x
= 0, lim

x→∞

H∗(x)

x
= +∞,

i.e., H∗ is a N-function. Moreover, by Young’s inequality,

xy ≤ H(x) +H∗(y), for all x, y ≥ 0. (1.3)

The Orlicz space LH(Ω) defined by N-function H is the space defined by

LH(Ω) = {u| u : Ω→ R is a measurable function with

‖u‖LH
= sup{

∫
Ω

uvdx|
∫

Ω

H∗(|v|)dx ≤ 1} <∞}.

Then LH(Ω) is a Banach space with a norm ‖u‖LH
. We note that the norm ‖u‖LH

is
equivalent to the Luxemburg norm

‖u‖H = inf{λ > 0|
∫

Ω

H(|u(x)

λ
|) ≤ 1}.

In the Orlicz space LH(Ω), Hölder inequality is valid (see [11]): for all u ∈ LH(Ω),
v ∈ LH∗(Ω), we have ∫

Ω

|uv|dx ≤ 2‖u‖LH
‖v‖LH∗ .
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In [2], the Orlicz-Sobolev space W 1LH(Ω) is defined by

W 1LH(Ω) = {u ∈ LH(Ω)| ∂u
∂xi
∈ LH(Ω), i = 1, . . . , N}

endowed with the norm

‖u‖1,H = ‖u‖H + ‖∇u‖H .
Then W 1LH(Ω) is a reflexive Banach space. The Orlicz-Sobolev space W 1

0LH(Ω) is
defined by the closure of C∞0 (Ω) in W 1LH(Ω). The space W 1LH(Ω) is also a reflexive
Banach space. By Lemma 5.7 in [5], the norm ‖∇u‖H is an equivalent to the norm
‖u‖1,H in W 1

0LH(Ω). For any given 0 < s < 1 and H a N-function, the fractional
Orlicz-Sobolev space W sLH(Ω) is the space defined by

W sLH(Ω) = {u ∈ LH(Ω) :

∫
Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N
<∞}

endowed with the norm

‖u‖s,H = ‖u‖H + [u]s,H ,

where [u]s,H is the Gagliardo semi-norm defined by

[u]s,H = inf{λ > 0|
∫

Ω

∫
Ω

H(
|u(x)− u(y)|
λ|x− y|s

)
dxdy

|x− y|N
≤ 1}.

By [2], for any 0 < s < 1 and H a Young function such that H and H∗ satisfy that

H(2t) ≤ C1H(t) and H∗(2t) ≤ C2H
∗(t), ∀t ≥ 0, C1, C2 > 0,

W sLH(RN) is a reflexive and separable Banach space. Furthermore C∞0 (RN) is dense
in W sLH(RN) in the norm ‖ · ‖s,H . If h(t) = |t|r(x,y)−2t, where r(·) is a continuous
function on Ω̄× Ω̄, (−∆)sr(·)un is the fractional r(·)−Laplacian operator with variable
exponent defined by

(−∆)sr(·)u(x) = P.V.

∫
Ω

|u(x)− u(y)|r(x,y)−2(u(x)− u(y))

|x− y|N+sr(x,y)

u(x)− u(y)

|u(x)− u(y)|
dy, x ∈ Ω.

Let W s
0LH(Ω) denote the closure of C∞0 (Ω) in the norm ‖u‖s,H such that

W s
0LH(Ω) = {u ∈ W sLH(Ω)| u = 0 a.e, in RN\Ω}.

Let us set

h0 = inf
t>0

th(t)

H(t)
h0 = sup

t>0

th(t)

H(t)
.

We assume that

1 < h0 ≤
th(t)

H(t)
≤ h0 <∞ ∀t ≥ 0. (1.5)

By Proposition 2.3 of [8], it implies that each H satisfies the ∆2−condition, i.e., there
exists a constant C > 0 such that

H(2t) ≤ CH(t), t ≥ 0.

We also assume that H is a function such that

H : t ∈ [0,∞) 7→ H(
√
t) is convex. (1.6)
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2. Main results

Let 0 < s < 1, h, H, H∗ be functions, LH(Ω) be the Orlicz space, W sLH(Ω) be
the fractional Orlicz-Sobolev space and W s

0LH(Ω) be the space defined in Section 1.
Let W s,r(x,y)(Ω) be the fractional Sobolev space with variable exponent r(x, y)

defined in Section 1. Let us define the functional Λ : W sLH(Ω)→ R by

Λ(u) =

∫
Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N
.

Then the functional Λ is of class C1(W sLH(Ω), R) and

< Λ′(u), v > =

∫
Ω

∫
Ω

h(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
v(x)− v(y)

|x− y|s
dxdy

|x− y|N
= < (−∆)shu, v >, (2.1)

which is proved in Proposition 3.3 in [11].

Lemma 2.1. [11] (Generalized Poincaré inequality on the Orlicz-Sobolev space)
Let Ω be a bounded open subset of RN , 0 < s < 1 and H be a Young function. Then
there exists a positive constant C > 0 such that

‖u‖H ≤ [u]s,H , ∀u ∈ W s
0LH(Ω). (2.2)

That is, the embedding

W s
0LH(Ω) ↪→ LH(Ω)

is continuous and compact. Furthermore [u]s,H is a norm of W s
0LH(Ω) equivalent to

‖ · ‖s,H .

Lemma 2.2. [1] Let u ∈ W sLH(Ω). Then

‖u‖h0
s,h0
≤ Λ(u) ≤ ‖u‖h0

s,h0 , if ‖u‖s,H > 1, (2.3)

‖u‖h0

s,h0 ≤ Λ(u) ≤ ‖u‖h0
s,h0

, if ‖u‖s,H < 1.

It follows that the embedding

W sLH(Ω) ↪→ W s,h0(Ω)

is continuous.

Proof. The proof is given by (1.4) and Theorem 3.11 of [1].

Theorem 2.3. [11] Let Ω be a bounded open subset of RN , 0 < s < 1 and H be
a N-function. Let 1 ≤ r(x) < h∗0 = Nh0

N−sh0
, N > sh0. Then the embedding

W s,h0 ↪→ Lr(x)

is continuous and compact for all 1 ≤ r(x) < h∗0. Moreover the embedding

W sLH(Ω) ↪→ Lr(x)

is continuous and compact for all 1 ≤ r(x) < h∗0. Furthermore there exists a positive
constant C such that

‖u‖Lr(x) ≤ C[u]s,H (2.4)
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Proof. Since the embedding W s,h0 ↪→ Lr(x) is continuous and compact for all 1 ≤
r(x) < h∗0 and by Lemma 2.2, the embedding W sLH(Ω) ↪→ W s,h0 is continuous, it
follows that for all 1 ≤ r(x) < h∗0, the embedding W sLH(Ω) ↪→ Lr(x) is continuous
and compact.

Theorem 2.4. Let Ω be a bounded open subset of RN , 0 < s1 < s < s2 < 1 and
H be a N-function. Then the embeddings

W s2
0 LH(Ω) ↪→ W s

0LH(Ω) ↪→ W s1
0 LH(Ω)

are continuous.

Proof. For any u ∈ W s2
0 LH(Ω), we have∫

Ω

∫
Ω∩{|x−y|≥1}

H(
|u(x)|
|x− y|s

)
dxdy

|x− y|N

≤
∫

Ω

∫
Ω∩{|x−y|≥1}

H(
|u(x)|
|x− y|s1

)
dxdy

|x− y|N

≤
∫

Ω

∫
Ω∩{|z|≥1}

H(
|u(x)|
|z|s1

)
dxdz

|z|N

≤ C

∫
Ω

H(|u(x)|)dx.

Moreover we have ∫
Ω

∫
Ω∩{|x−y|≤1}

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N

≤
∫

Ω

∫
Ω∩{|x−y|≤1}

H(
|u(x)− u(y)|
|x− y|s2

)
dxdy

|x− y|N

≤
∫

Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s2

)
dxdy

|x− y|N

Thus we have∫
Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N

≤
∫

Ω

∫
Ω∩{|x−y|≥1}

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N

+

∫
Ω

∫
Ω∩{|x−y|≤1}

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N

≤ C

∫
Ω

H(|u(x)|)dx+

∫
Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N

≤ C
( ∫

Ω

H(|u(x)|)dx+

∫
Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s2

)
dxdy

|x− y|N
)
. (2.5)



62 Tacksun Jung and Q-Heung Choi

It follows from this inequality that we can easily verify that the embeddingW s2
0 LH(Ω) ↪→

W s
0LH(Ω) is continuous. Similarly, for any u ∈ W s

0LH(Ω), we have∫
Ω

∫
Ω∩{|x−y|≥1}

H(
|u(x)|
|x− y|s1

)
dxdy

|x− y|N

≤
∫

Ω

∫
Ω∩{|z|≥1}

H(
|u(x)|
|z|s1

)
dxdz

|z|N

≤ D

∫
Ω

H(|u(x)|)dx.

Moreover we have ∫
Ω

∫
Ω∩{|x−y|≤1}

H(
|u(x)− u(y)|
|x− y|s1

)
dxdy

|x− y|N

≤
∫

Ω

∫
Ω∩{|x−y|≤1}

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N

≤
∫

Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N
.

Thus we have ∫
Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s1

)
dxdy

|x− y|N

≤
∫

Ω

∫
Ω∩{|x−y|≥1}

H(
|u(x)− u(y)|
|x− y|s1

)
dxdy

|x− y|N

+

∫
Ω

∫
Ω∩{|x−y|≤1}

H(
|u(x)− u(y)|
|x− y|s1

)
dxdy

|x− y|N

≤ D

∫
Ω

H(|u(x)|)dx+

∫
Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N

≤ D
( ∫

Ω

H(|u(x)|)dx+

∫
Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N
)
.

It follows that the embedding W s
0LH(Ω) ↪→ W s1

0 LH(Ω) is continuous. Thus the proof
of the lemma is complete.

Theorem 2.5. Assume that (1.5) and (1.6) hold, that the sequence {un} con-
verges weakly to u in W s

0LH(Ω) and

lim
n→+∞

sup < Λ′(un), un − u >≤ 0.

Then {un} converges strongly to u in W sLH(Ω).

Proof. Since the sequence {un} converges weakly to u inW s
0LH(Ω) and limn→+∞ sup <

Λ′(un), un − u >≤ 0, we have

lim
n→+∞

∫
Ω

∫
Ω

h(
|un(x)− un(y)|
|x− y|s

)
un(x)− un(y)

|un(x)− un(y)|
un(x)− un(y)

|x− y|s
dxdy

|x− y|N

≤
∫

Ω

∫
Ω

h(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
u(x)− u(y)

|x− y|s
dxdy

|x− y|N
.
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Thus the sequence{∫
Ω

∫
Ω

h(
|un(x)− un(y)|
|x− y|s

)
un(x)− un(y)

|un(x)− un(y)|
un(x)− un(y)

|x− y|s
dxdy

|x− y|N

}
is bounded and converges to∫

Ω

∫
Ω

h(
|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|u(x)− u(y)|
u(x)− u(y)

|x− y|s
dxdy

|x− y|N
.

By (1.5), we have

lim
n→+∞

h0

∫
Ω

∫
Ω

H(
|un(x)− un(y)|
|x− y|s

)
dxdy

|x− y|N

≤ lim
n→+∞

∫
Ω

∫
Ω

h(
|un(x)− un(y)|
|x− y|s

)
un(x)− un(y)

|un(x)− un(y)|
un(x)− un(y)

|x− y|s
dxdy

|x− y|N
.

Thus the sequence {∫
Ω

∫
Ω

H(
|un(x)− un(y)|
|x− y|s

)
dxdy

|x− y|N

}
is bounded and converges to∫

Ω

∫
Ω

H(
|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N
.

Thus the sequence {un} is bounded and converges weakly to u in LH(Ω). Since the
embedding W s

0LH(Ω) ↪→ LH(Ω) is continuous and compact, {un} converges strongly
to u in W s

0LH(Ω).

Theorem 2.6. If u, un ∈ W sLH(Ω), n = 1, 2, . . ., then the following statement
are equivalent to each other
(i) limn→∞ ‖un − u‖s,H = 0, i = 1, 2,
(ii) limn→∞

∫
Ω
H(un(x)− u(x))dx = 0 and limn→∞[un − u]s,H = 0,

(iii) un → u in measure in W sLH(Ω) and limn→∞
∫

Ω
H(un(x))dx =

∫
Ω
H(u(x))dx.

Proof. By the definition of ‖ · ‖s,H , (i)⇔(ii) holds. We shall show that (i) implies
(iii). We assume that (i) holds. Then∫

Ω

[H(un)−H(x)]dx ≤
∫

Ω

h(u+ θ(un − u))(un − u)dx

≤ ‖h(u+ θ(un − u))‖H∗‖un − u‖H
≤ ‖h(u+ θ(un − u))‖H∗‖un − u‖s,H → 0

for 0 < θ < 1. It follows that (iii) holds. Assume that (iii) holds. Since

lim
n→∞

∫
Ω

H(un(x))dx =

∫
Ω

H(u(x))dx,

un converges weakly to u in LH(Ω). By Lemma 2.1, since un → u in measure in
W sLH(Ω) and the embedding W sLH(Ω) ↪→ LH(Ω) is continuous and compact, un →
u strongly
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