DOI QR코드

DOI QR Code

Nutrient Characteristics of Biomass, Forest Floor, and Soil between Plantation and Expansion Sites of Phyllostachys nigra var. henonis

솜대 조림지와 확산지의 바이오매스, 임상, 토양의 양분 특성

  • Kwak, You Sig (Department of Forest Resources, Gyeongsang National University) ;
  • Baek, Gyeongwon (Department of Forest Resources, Gyeongsang National University) ;
  • Choi, Byeonggil (Department of Forest Resources, Gyeongsang National University) ;
  • Ha, Jiseok (Department of Forest Resources, Gyeongsang National University) ;
  • Bae, Eun Ji (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongsang National University)
  • 곽유식 (경상국립대학교 산림자원학과) ;
  • 백경원 (경상국립대학교 산림자원학과) ;
  • 최병길 (경상국립대학교 산림자원학과) ;
  • 하지석 (경상국립대학교 산림자원학과) ;
  • 배은지 (국립산림과학원 산림바이오소재연구소) ;
  • 김춘식 (경상국립대학교 산림자원학과)
  • Received : 2021.01.05
  • Accepted : 2021.03.02
  • Published : 2021.03.31

Abstract

In this study, the relationships between bamboo expansion and the nutrient characteristics of bamboo biomass, the forest floor, and mineral soil (at 30-cm depth) were determined in unfertilized expansion sites and fertilized plantations of Phyllostachys nigra var. henonis in Jinju, Gyeongsangnam-do. Nitrogen and phosphorus concentrations in bamboo components (culm, branches, and foliage) were significantly higher in the plantation site than those in the expansion site (P < 0.05). However, the nutrient concentration of the forest floor did not differ significantly between the plantation and expansion sites. Mean organic carbon concentration at 0-30-cm soil depth was significantly higher in the plantation site (30.80 g kg-1) than that in the expansion site (15.64 g kg-1). In addition, total nitrogen, phosphorus, and exchangeable K+ at 0-30-cm soil depth were significantly higher in the plantation site than those in the expansion site. These results indicate that bamboo can spread to areas with low-nutrient concentrations in adjacent forests.

본 연구는 대나무 확산에 있어서 토양 성질이 미치는 영향을 조사하기 위해 매년 시비가 실시된 솜대 조림지와 미시비 확산지를 대상으로 바이오매스 부위별 양분 농도와 임상 및 토양 30 cm 깊이의 양분 특성을 비교하였다. 솜대 조림지의 잎, 가지, 줄기 내 질소와 인 농도는 확산지에 비해 유의적으로(P < 0.05) 높았으나, 임상의 양분 농도는 조림지와 확산지 사이에 유의적인 차이가 없었다. 토양 0~30 cm 깊이의 평균 유기탄소는 조림지가 30.80 mg g-1으로 확산지 15.64 mg g-1에 비해 유의적으로 높았다. 평균 전질소 농도의 경우 조림지 2.47 mg g-1, 확산지 1.24 mg g-1, 인은 조림지 10.27 mg kg-1, 확산지 5.61 mg kg-1, 포타슘은 조림지 0.27 cmolc kg-1, 확산지 0.16 cmolc kg-1로 조림지가 확산지에 비해 유의적으로 높았다. 본 연구 결과에 따르면 토양 양분 상태는 솜대의 인접 산림지역으로 확산에 큰 영향을 끼치지 않는 것으로 나타났다.

Keywords

References

  1. Bai, S., Wang, Y., Conant, R.T., Zhou, G., Xu, Y., Wang, N., Fang, F. and Chen, J. 2016a. Can native clonal moso bamboo encroach on adjacent natural forest without human intervention? Scientific Reports 6: 31504. https://doi.org/10.1038/srep31504
  2. Bai, S., Conant, R., Zhou, G., Wang, Y., Wang, N., Li, Y. and Zhang, K. 2016b. Effects of moso bamboo encroachment into native, broad-leaved forests on soil carbon and nitrogen pool. Scientific Reports 6: 31480. https://doi.org/10.1038/srep31480
  3. Christanty, L., Mailly, D. and Kimmins, J.P. 1996. "Without bamboo, the land dies": biomass, litterfall, and soil organic matter dynamics of a Javanese bamboo talun-kebun system. Forest Ecology and Management 87(1-3): 75-78. https://doi.org/10.1016/S0378-1127(96)03834-0
  4. Griscom, B.W. and Ashton, P.M.S. 2003. Bamboo control of forest succession: Guadua sarcocarpa in Southeastern Peru. Forest Ecology and Management 175(1-3): 445-454. https://doi.org/10.1016/S0378-1127(02)00214-1
  5. Inoue, A. Tateishi, H., Sakuta, K., Yamamoto, K., Mizoue, N. and Kitahara, F. 2012. Relationship of light environment to stand attributes in a stand of bamboo, Phyllostachys pubescens. Ecological Engineering 38(1): 135-139. https://doi.org/10.1016/j.ecoleng.2011.09.007
  6. Jung, S.Y., Lee, K.S., Park, J.H., Park, Y.B., Yoo, B.O., Kim, C. and Cho, H.S. 2017. Biomass equations and accumu-lation of Phyllostachys pubescens, P. bambusoides, and P. nigra var. henonis stands. Journal of Agriculture and Life Science 51(5): 27-38. https://doi.org/10.14397/jals.2017.51.5.27
  7. Kalra, Y.P. and Maynard, D.G. 1991. Methods Manual for Forest Soil and Plant Analysis. Northern Forest Centre, Edmonton, Alberta. Information Report NOR-X-319. pp. 115.
  8. Kim, C, Baek, G., Yoo, B.O., Jung, S.Y. and Lee, K.S. 2018. Regular fertilization effects on the nutrient distribution of bamboo components in a Moso bamboo (Phyllostachys pubescens (Mazel) Ohwi) stand in south Korea. Forests 9(11): 671. https://doi.org/10.3390/f9110671
  9. Nath, A.J., Lal, R. and Das, A.K. 2015. Managing woody bamboos for carbon farming and carbon trading. Global Ecology and Conservation 3: 654-663. https://doi.org/10.1016/j.gecco.2015.03.002
  10. National Institute of Forest Science. 2016. Distribution Status of Bamboo Forest Resources in Korea, December 2016 (No. 16-27), Seoul, Korea.
  11. Okutomi, K., Shinoda, S. and Fukuda, H. 1996. Causal analysis of the invasion of broad forest by bamboo in Japan. Journal of Vegetation Science 7(5): 723-728. https://doi.org/10.2307/3236383
  12. Park, I.H. and Ryu, S.B. 1996. Biomass, net production and nutrient distribution of bamboo Phyllostachys stands in Korea. Journal of Korean Forestry Society 85(3): 453-461.
  13. Park, S.W. Baek, G., Cho, H.S., Yoo, B.O., Jung, S.Y., Lee, K.S. and Kim, C. 2017. Nutrient distribution of culm, branches and leaf in Phyllostachys bambusoides and Phyllostachys nigra var. nenosis. Journal of Korean Forest Society 106(4): 388-396.
  14. Sakai, Y. and Tadaki, Y. 1997. Characteristics of stem flow and throughfall in a Madake and in a Mousouchiku stands. Bamboo Journal 14: 28-35.
  15. SAS Institute Inc. 2003. SAS/STAT Statistical Software. Version 9.1 SAS Publishing Cary, NC.
  16. Shiau, Y.J. and Chiu, C.Y. 2017. Changes in soil biochemical properties in a cedar plantation invaded by Moso bamboo. Forests 8(7): 222. https://doi.org/10.3390/f8070222
  17. Song, Q. Lu, H., Yang, J. Yang, G. and Yang, Q. 2017. Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Scientific Reports 7: 40383. https://doi.org/10.1038/srep40383
  18. Suzuki, S. and Nakagoshi, N. 2008. Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecological Research 23: 641-647. https://doi.org/10.1007/s11284-007-0422-8
  19. Umemura, M. and Takenaka, C. 2015. Changes in chemical characteristics of surface soils in hinoki cypress (Chamaecyparis obtusa) forests induced by the invasion of exotic Moso bamboo (Phyllostachys pubescens) in central Japan. Plant Species Biology 30(1): 72-79. https://doi.org/10.1111/1442-1984.12038
  20. Wang, Y., Bai, S., Binkley, D., Zhou, G. and Fang, F. 2016. The independence of clonal shoot's growth from light availability supports Moso bamboo invasion of closedcanopy forest. Forest Ecology and Management 368: 105-110. https://doi.org/10.1016/j.foreco.2016.02.037
  21. Weil, R.R. and Brady, N.C. 2017. The Nature and Properties of Soils. 15th edition, Pearson, pp. 1104.
  22. Wu, F.Z., Yang, W.Q., Wang, K.Y., Wu, N. and Lu, Y.J. 2009. Effect of stem density on leaf nutrient dynamics and nutrient use efficiency of dwarf bamboo. Pedosphere 19(4): 496-504. https://doi.org/10.1016/S1002-0160(09)60142-9
  23. Yoo, B.O., Park, J.H., Park, Y.B., Jung, S.Y., Lee, K.S. and Kim, C. 2017. Assessment of expansion characteristics and classification of distribution types for bamboo forests using GIS. Journal of the Korean Association of Geographic Information Studies 20(4): 55-64. https://doi.org/10.11108/KAGIS.2017.20.4.055
  24. Yuen, J.Q., Fung, T. and Ziegler, A.D. 2017. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. Forest Ecology and Management 393: 113-138. https://doi.org/10.1016/j.foreco.2017.01.017
  25. Zaninovich, S.C., Montti, L.F., Alvarez, F. and Gatti, M.G. 2017. Replacing trees by bamboos: Changes from canopy to soil organic carbon storage. Forest Ecology and Management 400: 208-217. https://doi.org/10.1016/j.foreco.2017.05.047