Molecular and Phenotypic Characteristics of Patients with Pseudohypoparathyroidism: Single Center's Experience

가성부갑상선기능저하증 환자의 분자유전학적 및 임상적 특징: 단일기관의 경험

  • Kim, Min-ji (Department of Pediatrics, Pusan National University Children's Hospital) ;
  • Yoon, Ju Young (Department of Pediatrics, Pusan National University Children's Hospital) ;
  • Yoo, Sukdong (Department of Pediatrics, Pusan National University Children's Hospital) ;
  • Lee, Jun (Department of Pediatrics, Pusan National University Children's Hospital) ;
  • Cheon, Chong Kun (Department of Pediatrics, Pusan National University Children's Hospital)
  • 김민지 (부산대학교 어린이병원 소아청소년과) ;
  • 윤주영 (부산대학교 어린이병원 소아청소년과) ;
  • 유석동 (부산대학교 어린이병원 소아청소년과) ;
  • 이준 (부산대학교 어린이병원 소아청소년과) ;
  • 전종근 (부산대학교 어린이병원 소아청소년과)
  • Published : 2021.12.31

Abstract

Purpose: Pseudohypoparathyroidism (PHP) is caused by genetic and epigenetic alteration in the GNAS locus, and characterized by the resistance to multiple hormones and the Albright's hereditary osteodystrophy (AHO) phenotype. This study investigated the phenotypic characteristics and molecular features of PHP. Methods: Eight patients who diagnosed as PHP were enrolled at Pusan National University Children's hospital and clinical features, biochemical and genetic findings were retrospectively reviewed. Results: Of a total of 8 patients, 5 were diagnosed with PHP1a, and 3 were diagnosed with PHP1b. Patients with PHP1a had three different mutations in the GNAS gene, and patients with PHPIb had imprinting defect in differentially methylated regions (DMRs) of the GNAS locus. Two novel GNAS variants were identified in patients with PHP1a, including c.313-2A>T and c.1094G>A. All patients with PHP1a displayed AHO features; short stature (80%), brachydactyly (80%), a round face (80%), obesity (40%), heterotopic ossification (60%), and intellectual disability (60%), whereas only one patient (33.3%) with PHP1b showed AHO feature such as a round face. When phenotypic features between PHP1a and PHP1b patients were compared, patients with PHP1b showed a tendency of higher current height standard deviation scores (SDS) compared to patients with PHP1a, (-3.2±2.1 vs.-1.1±0.8; P=0.06) Conclusions: This study summarizes the phenotypic and genetic features of the PHP patients. Although we found considerable clinical overlap between PHP1a and PHP1b, further long-term follow-up is needed to evaluate the growth and development of children with PHP, as well as the effects of end-organ resistances to endocrine hormones.

목적: 가성부갑상선기능항진증은 GNAS 부위의 돌연변이에 의해 발생하며, 여러 호르몬에 대한 저항성과 올브라이트 유전성 골이영양증을 특징으로 한다. 이 연구는 가성부갑상선기능항진증의 표현형 특성과 분자유전학적 특징을 조사하고자 하였다. 방법: 부산대학교 어린이병원에 등록된 가성부갑상선기능항진증으로 진단된 환자 8명의 임상적 특징과, 생화학적, 유전학적 검사 결과들을 포함한 의무기록을 후향적으로 조사하였다. 결과: 총 8명의 환자 중 5명은 PHP1a로 진단되었고 3명은 PHP-1b로 진단되었다. PHP1a 환자는 GNAS 유전자의 3가지 서로 다른 돌연변이를 가졌고, PHPIb 환자는 DMR (differential methylated region) 각인 GNAS의 소실을 보였다. 두 개의 새로운 GNAS 변이(c.313-2A>T, c.1094G>A)가 PHP1a 환자에서 발견이 되었다. 모든 PHP1a 환자는 저신장(80%), 단지증(80%), 둥근 얼굴(80%), 비만(40%), 이소성 골화(60%), 지적 장애(60%) 등의 올브라이트 유전성 골이영양증의 특징을 보였으며, PHP1b 환자의 경우는 한 명(33.3%)만이 둥근 얼굴과 같은 올브라이트 유전성 골이영양증의 특징을 보였다. PHP1a 환자와 PHP1b 환자의 표현형 특징을 비교하였을 때, 현재 키 SDS만이 PHP1b 환자에서 PHP1a 환자보다 각각 더 높은 경향성을 보였다(P=0.06). 결론: 본 연구는 한국인 PHP 환자들의 임상적 표현형 및 유전학적 특징을 요약하였다. PHP1a와 PHP1 환자들 간에 상당한 임상적 중복이 있었지만, 다른 장기 말단 저항의 영향뿐만 아니라 PHP로 진단받은 소아의 성장과 발달을 평가하기 위해서는 더 장기적인 추적 연구가 필요하겠다.

Keywords

Acknowledgement

The authors thank the patients and their families for participating in this study.

References

  1. Mantovani G. Pseudohypoparathyroidism: diagnosis and treatment. The Journal of Clinical Endocrinology & Metabolism 2011;96:3020-30. https://doi.org/10.1210/jc.2011-1048
  2. Nakamura Y, Matsumoto T, Tamakoshi A, Kawamura T, Seino Y, Kasuga M, et al. Prevalence of idiopathic hypoparathyroidism and pseudohypoparathyroidism in Japan. J Epidemiol 2000;10:29-33. https://doi.org/10.2188/jea.10.29
  3. Thiele S, Werner R, Grotzinger J, Brix B, Staedt P, Struve D, et al. A positive genotype-phenotype correlation in a large cohort of patients with Pseudohypoparathyroidism Type Ia and Pseudo-pseudohypoparathyroidism and 33 newly identified mutations in the GNAS gene. Molecular Genetics & Genomic Medicine 2015;3:111-20. https://doi.org/10.1002/mgg3.117
  4. Bastepe M, Juppner H. GNAS locus and pseudohypoparathyroidism. Horm Res Paediatr 2005;63:65-74. https://doi.org/10.1159/000083895
  5. Elli FM, Linglart A, Garin I, De Sanctis L, Bordogna P, Grybek V, et al. The prevalence of GNAS deficiency-related diseases in a large cohort of patients characterized by the EuroPHP network. The Journal of Clinical Endocrinology & Metabolism 2016;101:3657-68. https://doi.org/10.1210/jc.2015-4310
  6. Bastepe M, Pincus J, Sugimoto T, Tojo K, Kanatani M, Azuma Y, et al. Positional dissociation between the genetic mutation responsible for pseudohypoparathyroidism type Ib and the associated methylation defect at exon A/B: evidence for a long-range regulatory element within the imprinted GNAS1 locus. Hum Mol Genet 2001;10:1231-41. https://doi.org/10.1093/hmg/10.12.1231
  7. Bastepe M, Altug-Teber O, Agarwal C, Oberfield SE, Bonin M, Juppner H. Paternal uniparental isodisomy of the entire chromosome 20 as a molecular cause of pseudohypoparathyroidism type Ib (PHP-Ib). Bone 2011;48:659-62. https://doi.org/10.1016/j.bone.2010.10.168
  8. Kim JH, Yun S, Hwang S-s, Shim JO, Chae HW, Lee YJ, et al. The 2017 Korean National Growth Charts for children and adolescents: development, improvement, and prospects. Korean J of Pediatr 2018;61:135. https://doi.org/10.3345/kjp.2018.61.5.135
  9. Sano S, Iwata H, Matsubara K, Fukami M, Kagami M, Ogata T. Growth hormone deficiency in monozygotic twins with autosomal dominant pseudohypoparathyroidism type Ib. Endocr J 2015:EJ15-0033.
  10. Chu X, Zhu Y, Wang O, Nie M, Quan T, Xue Y, et al. Clinical and genetic characteristics of pseudohypoparathyroidism in the Chinese population. Clinical Endocrinol (Oxf) 2018;88:285-94. https://doi.org/10.1111/cen.13516
  11. Mantovani G, Ferrante E, Giavoli C, Linglart A, Cappa M, Cisternino M, et al. Recombinant human GH replacement therapy in children with pseudohypoparathyroidism type Ia: first study on the effect on growth. The Journal of Clinical Endocrinology & Metabolism 2010;95:5011-7. https://doi.org/10.1210/jc.2010-1649
  12. Monk D, Morales J, den Dunnen JT, Russo S, Court F, Prawitt D, et al. Recommendations for a nomenclature system for reporting methylation aberrations in imprinted domains. Epigenetics 2018;13:117-21. https://doi.org/10.1080/15592294.2016.1264561
  13. Elli FM, deSanctis L, Ceoloni B, Barbieri AM, Bordogna P, Beck-Peccoz P, et al. Pseudohypoparathyroidism Type I a and Pseudo-Pseudohypoparathyroidism: The Growing Spectrum of GNAS Inactivating Mutations. Hum Mutat 2013;34:411-6. https://doi.org/10.1002/humu.22265
  14. Lemos MC, Thakker RV. GNAS mutations in Pseudohypoparathyroidism type 1a and related disorders. Hum Mutat 2015;36:11-9. https://doi.org/10.1002/humu.22696
  15. Lietman SA, Goldfarb J, Desai N, Levine MA. Preimplantation genetic diagnosis for severe albright hereditary osteodystrophy. The Journal of Clinical Endocrinology & Metabolism 2008;93:901-4. https://doi.org/10.1210/jc.2007-2040
  16. Bastepe M, Frohlich LF, Hendy GN, Indridason OS, Josse RG, Koshiyama H, et al. Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. The Journal of Clinical Investigation 2003;112:1255-63. https://doi.org/10.1172/JCI19159
  17. Dixit A, Chandler K, Lever M, Poole R, Bullman H, Mughal M, et al. Pseudohypoparathyroidism type 1b due to paternal uniparental disomy of chromosome 20q. The Journal of Clinical Endocrinology & Metabolism 2013;98:E103-E8. https://doi.org/10.1210/jc.2012-2639
  18. Fernandez-Rebollo E, Lecumberri B, Garin I, Arroyo J, Bernal-Chico A, Goni F, et al. New mechanisms involved in paternal 20q disomy associated with pseudohypoparathyroidism. European Journal of Endocrinology 2010;163:953-62. https://doi.org/10.1530/EJE-10-0435