비인두암 Vertical MLC VMAT plan 유용성 평가

Evaluating efficiency of Vertical MLC VMAT plan for naso-pharyngeal carcinoma

  • 채승훈 (서울대학교병원 방사선종양학과) ;
  • 손상준 (서울대학교병원 방사선종양학과) ;
  • 이제희 (서울대학교병원 방사선종양학과)
  • Chae, Seung Hoon (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Son, Sang Jun (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Lee, Je Hee (Department of Radiation Oncology, Seoul National University Hospital)
  • 발행 : 2021.12.31

초록

목 적 : 비인두암 VMAT 치료 시 콜리메이터 각도 273°와 350°를 사용한 2회전 치료계획(Vertical MLC VMAT plan, 이하 VMV plan)과 콜리메이터 각도 20°와 340°를 사용한 2회전 치료계획(Complemental MLC VMAT plan, 이하 CMV plan)과의 비교 분석을 통해 유용성을 평가해 보고자 한다. 대상 및 방법 : 본원에서 VMAT 치료를 받은 비인두암 환자 30명을 대상으로 하였다. 전산화치료계획은 Eclipse, PO, AcurosXB 알고리즘을 이용하였으며, 치료기는 Vital-beam을 사용하였다. 치료계획은 갠트리 회전반경이 각각 360°인 두 개의 회전(Arc)을 6MV를 이용하여 생성하고, 콜리메이터 각도 변화에 의한 영향을 확인하기 위해 273°와 350°로 설정한 VMV plan과 20°와 340°로 설정한 CMV plan을 수립하였다. 선량용적 히스토그램에서 확인 및 산출된 계획표적용적(PTV)과 결정장기(OAR)들의 선량지표들과 변조복잡성지수(MCSv), MU, 치료시간에 대해 기술통계 및 대응표본 t-검정을 실시하였다. 그리고 대상별로 두 치료계획의 MCSv의 차이와 각각의 평가지표들의 차이 간 상관관계가 있는지 확인하기 위해 피어슨의 상관관계 분석을 실시하였다. 결 과 : PTV 평가 지표의 경우, VMV Plan에서 PTV_67.5의 CI가 3.76% 개선되었으며, OAR의 경우 척수(-14.05%)와 뇌 줄기(-9.34%)의 선량감소 효과가 두드러지게 나타났다. 그리고 귀밑샘들(왼쪽 : -5.38%, 오른쪽 : -5.97%)과, 시각기관들(왼쪽 시신경 : -4.88%, 오른쪽 시신경 : -5.80%, 시신경교차 : -6.12%, 왼쪽 수정체 : -6.12%, 오른쪽 수정체 : -5.26%), 청각기관(왼쪽 : -11.74%, 오른쪽 : -12.31%)과 갑상샘(-2.02%)에서의 선량감소효과도 확인할 수가 있었다. 또한 MCSv가 VMV Plan에서 5.31% 높게 나왔으며, MU의 경우에 6.11% 낮은 것으로 나타났다. 그리고 두 치료계획의 MCSv의 차이는 PTV_54의 CI(r=-0.55)의 차이, PTV_48의 CI(r=-0.43)의 차이와 유의한 음(-)의 상관관계를 보였고, 척수(r=0.40), 뇌줄기(r=0.34), 양쪽 침샘들(왼쪽 : r=0.36, 오른쪽 : r=0.37)의 차이와 양(+)의 상관관계를 보였다. 이는 VMV plan의 moluation 복잡성이 CMV plan에 비해 상대적으로 높아 질 때, PTV_54, 48의 CI 개선 및 척수, 뇌줄기, 양쪽침샘들의 선량 감소 효과가 커지는 것을 의미하며, 이러한 분석결과들을 바탕으로 VMV plan의 modulation에 대한 효율성이 CMV plan 보다 크다는 것을 확인할 수 있었다. (위 모든 값에 대해 유의수준은 p<.05) 결 론 : VMV Plan은 CMV plan과 비교하여 MLC가 더 효율적으로 modulation할 수 있도록 함으로써, 치료계획의 질을 향상 시키는데 도움이 될 것이라 사료된다.

Purpose : The purpose of the study is to evaluate the efficiency of Vertical MLC VMAT plan(VMV plan) Using 273° and 350° collimator angle compare to Complemental MLC VMAT plan(CMV plan) using 20° and 340° collimator angle for nasopharyngeal carcinoma. Materials & Methods : Thirty patients treated for nasopharyngeal carcinoma with the VMAT technique were retrospectively selected. Those cases were planned by Eclipse, PO and AcurosXB Algorithm with two 6MV 360° arcs and Each arc has 273° and 350° of collimator angle. The Complemental MLC VMAT plans are based on existing treatment plans. Those plans have the same parameters of existing treatment plans but collimator angle. For dosimetric evaluation, the dose-volumetric(DV) parameters of the planning target volume (PTV) and organs at risk (OARs) were calculated for all VMAT plans. MCSv(Modulation complexity score of VMAT), MU and treatment time were also compared. In addition, Pearson's correlation analysis was performed to confirm whether there was a correlation between the difference in the MCSv and the difference in each evaluation index of the two treatment plans. Result : In the case of PTV evaluation index, the CI of PTV_67.5 was improved by 3.76% in the VMV Plan, then for OAR, the dose reduction effect of the spinal cord (-14.05%) and brain stem (-9.34%) was remarkable. In addition, the parotid glands (left parotid : -5.38%, right : -5.97%) and visual organs (left optic nerve: -4.88%, right optic nerve: -5.80%, optic chiasm : -6.12%, left lens: -6.12%, right lens: -5.26%), auditory organs (left: -11.74%, right: -12.31%) and thyroid gland (-2.02%) were also confirmed. The difference in MCSv of the two treatment plans showed a significant negative (-) correlation with the difference in CI (r=-0.55) of PTV_54 and the difference in CI (r=-0.43) of PTV_48. Spinal cord (r=0.40), brain stem (r=0.34), and both salivary glands (left: r=0.36, right: r=0.37) showed a positive (+) correlation. (For all the values, p<.05) Conclusion : Compared to the CMV plan, the VMV plan is considered to be helpful in improving the quality of the treatment plan by allowing the MLC to be modulated more efficiently

키워드

참고문헌

  1. Zhang P, Happersett L, Yang Y, et al.: Optimization of collimator trajectory in volumetric modulated arc therapy: development and evaluation for paraspinal SBRT. Int J Radiat Oncol 2010;77:591-599 https://doi.org/10.1016/j.ijrobp.2009.08.056
  2. Cilla S, Deodato F, Diges C et al: Assessing the feasibility of volumetric-modulated arc therapy using simultaneous integrated boost (SIB-VMAT): An analysis for complex head-neck, high-risk prostate and rectal cancer cases. Med. Dosimetry 2014;39:108 https://doi.org/10.1016/j.meddos.2013.11.001
  3. Kim Yong Ho, Park Dahi, Park Ha Ryung et al.: Effect of collimator angles on the dosimetric results of volumetric modulated arc therapy planning for patients with a locally-advanced nasopharyngeal carcinoma. The Journal of the Korean Physical Society 2017;70:539-544 https://doi.org/10.3938/jkps.70.539
  4. Varian Medical Systems: Eclipse photon and electron instructions for use. 2015; http://www.myvarian.com. Accessed Oct 2021
  5. Tas B, Bilge H, Ozturk ST: An investigation of the dose distribution effect related with collimator angle in volumetric arc therapy of prostate cancer. J Med Phys. 2016;41:100-105 https://doi.org/10.4103/0971-6203.181635
  6. Treutwein M, Hipp M, Koelbl O et al: Searching standard parameters for volumetric modulated arc therapy (VMAT) of prostate cancer. Radiation oncology 2012;7:108 https://doi.org/10.1186/1748-717X-7-108
  7. Shingo O, Tomohiro S, Yoshihiro U et al: Effect of collimator angle on HyperArc stereotactic radiosurgery planning for single and multiple brain metastases. Medical Dosimetry 2020;45:85-91 https://doi.org/10.1016/j.meddos.2019.07.004
  8. Son Sang Jun, Mun Jun Ki, Kim Dae Ho et al: Evaluating efficiency of Coaxial MLC VMAT plan for spine SBRT. Journal of Korean Society for Radiation Therapy 2014;26(2):313-320
  9. Biau J, Lapeyre M, Troussier I, et al: Selection of lymph node target volumes for definitive head and neck radiation therapy: a 2019 Update. Int J Radiat Oncol 2019;134:1-9
  10. Vanetti E, Nicolini G, Nord J, et al.: On the role of the optimization algorithm of RapidArc® volumetric modulated arc therapy on plan quality and efficiency. Medical Physics 2011;38(11):5844-5846 https://doi.org/10.1118/1.3641866
  11. Van't Riet A, Mak AC, Moerland MA, et al.: A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation. Application to the prostate. Int J Radiat Oncol Biol Phys 1997;37:731-736 https://doi.org/10.1016/S0360-3016(96)00601-3
  12. McNiven AL, Sharpe MB, Purdie TG: A new metric for assessing IMRT modulation complexity and plan deliverability. Med. Phys 2010;37:505-515 https://doi.org/10.1118/1.3276775
  13. Masi L, Doro R, Favuzza et al: Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy. Med.l Phys 2013;40:071718. https://doi.org/10.1118/1.4810969
  14. Deasy JO, Moiseenko V, Marks L et al.: Radiotherapy Dose-Volume Effects on Salivary Gland Function. Int J Radiat Oncol Biol Phys 2010;76:S58-S63 https://doi.org/10.1016/j.ijrobp.2009.06.090
  15. Mayo C, Martel MK, Marks LB et al.: Radiation Dose-Volume Effects of Optic Nerves and Chiasm. Int J Radiat Oncol Biol Phys 2010;76:S28-S35 https://doi.org/10.1016/j.ijrobp.2009.07.1753
  16. Bhandare N, Jackson A, Eisbruch A et al.: Radiation Therapy and Hearing Loss. Int J Radiat Oncol Biol Phys 2010;76:S50-S57 https://doi.org/10.1016/j.ijrobp.2009.04.096