DOI QR코드

DOI QR Code

Comparison of the spatial-temporal distributions of the heterotrophic dinoflagellates Gyrodinium dominans, G. jinhaense, and G. moestrupii in Korean coastal waters

  • Lee, Sung Yeon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kang, Hee Chang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Ok, Jin Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • You, Ji Hyun (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Park, Sang Ah (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Eom, Se Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2021.01.19
  • Accepted : 2021.03.04
  • Published : 2021.03.17

Abstract

Heterotrophic dinoflagellates Gyrodinium spp. are one of the major grazers of phytoplankton in many coastal waters. Gyrodinium dominans, G. jinhaense, and G. moestrupii have similar morphologies but different edible prey species. To explore the variations in the ecological niches of these three species, we investigated their spatial-temporal distributions in Korean waters. Because of the high similarity in morphology among these three Gyrodinium species, we used real-time polymerase chain reactions to quantify their abundance in water samples that were seasonally collected from 28 stations along the Korean Peninsula from April 2015 to October 2018. Cells of G. dominans were found at all sampling stations, G. jinhaense at 26 stations, and G. moestrupii at 22 stations, indicating that all three species were widely distributed in Korea. Furthermore, all three species displayed strong seasonal distributions. The largest numbers of the stations where G. dominans and G. jinhaense cells were present were found during the summer (26 and 23 stations, respectively), but that for G. moestrupii was found in the autumn (15 stations). The abundance of G. dominans was positively correlated with that of G. jinhaense, but not with that of G. moestrupii. The highest abundances of G. dominans (202.5 cells mL-1) and G. jinhaense (20.2 cells mL-1) were much greater than that of G. moestrupii (1.2 cells mL-1). The highest abundances of G. dominans and G. jinhaense were found in July, whereas that of G. moestrupii was found in March. The abundances of G. dominans and G. jinhaense, but not G. moestrupii, were positively correlated with water temperature. Therefore, the spatial-temporal distributions of G. dominans and G. jinhaense were closer than those of G. moestrupii and G. dominans or G. jinhaense. This differs from results based on the relative differences in ribosomal DNA sequences and the types of edible prey reported in the literature. Thus, the variations in spatial-temporal distributions and prey species of these three Gyrodinium species suggest that they may have different ecological niches in Korean coastal waters.

Keywords

References

  1. Anderson, S. R. & Menden-Deuer, S. 2017. Growth, grazing, and starvation survival in three heterotrophic dinoflagellate species. J. Eukaryot. Microbiol. 6:213-225. https://doi.org/10.1111/jeu.12353
  2. Baker, A. C. 2003. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Ann. Rev. Ecol. Evol. Syst. 34:661-689. https://doi.org/10.1146/annurev.ecolsys.34.011802.132417
  3. Burkholder, J. M., Glibert, P. M. & Skelton, H. M. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77-93. https://doi.org/10.1016/j.hal.2008.08.010
  4. Buskey, E. J., Coulter, C. J. & Brown, S. L. 1994. Feeding, growth and bioluminescence of the heterotrophic dinoflagellate Protoperidinium huberi. Mar. Biol. 121:373-380. https://doi.org/10.1007/BF00346747
  5. Daugbjerg, N., Hansen, G., Larsen, J. & Moestrup, O. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302-317. https://doi.org/10.2216/i0031-8884-39-4-302.1
  6. Gifford, D. J. & Dagg, M. J. 1991. The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchrus Mur ukawa. Mar. Microb. Food Webs 5:161-177.
  7. Giovannoni, S. J., DeLong, E. F., Olsen, G. J. & Pace, N. R. 1988. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 170:720-726. https://doi.org/10.1128/jb.170.2.720-726.1988
  8. Hansen, P. J. 1991. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73:253-261. https://doi.org/10.3354/meps073253
  9. Hansen, P. J. 2011. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J. Eukaryot. Microbiol. 58:203-214. https://doi.org/10.1111/j.1550-7408.2011.00537.x
  10. Hansen, G. & Daugbjerg, N. 2004. Ultrastructure of Gyrodinium spirale, the type species of Gyrodinium (Dinophyceae), including a phylogeny of G. dominans, G. rubrum and G. spirale deduced from partial LSU rDNA sequences. Protist 155:271-294. https://doi.org/10.1078/1434461041844231
  11. Jang, S. H. & Jeong, H. J. 2020. Spatio-temporal distributions of the newly described mixotrophic dinoflagellate Yihiella yeosuensis (Suessiaceae) in Korean coastal waters and its grazing impact on prey populations. Algae 35:45-59. https://doi.org/10.4490/algae.2020.35.2.24
  12. Jang, S. H., Jeong, H. J., Lee, M. J., Kim, J. H. & You, J. H. 2019. Gyrodinium jinhaense n. sp., a new heterotrophic unarmored dinoflagellate from the coastal waters of Korea. J. Eukaryot. Microbiol. 66:821-835. https://doi.org/10.1111/jeu.12729
  13. Jeong, H. J. 1994. Predation by the heterotrophic dinoflagellate Protoperidinium cf. divergens on copepod eggs and early naupliar stages. Mar. Ecol. Prog. Ser. 114:203-208. https://doi.org/10.3354/meps114203
  14. Jeong, H. J. 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol. 46:390-396. https://doi.org/10.1111/j.1550-7408.1999.tb04618.x
  15. Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., Ok, J. H., You, J. H., Kim, J. H., Lee, K. H., Park, S. A., Eom, S. H., Yoo, Y. D. & Kim, K. Y. 2021. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214. https://doi.org/10.1126/sciadv.abe4214
  16. Jeong, H. J., Kim, T. H., Yoo, Y. D., Yoon, E. Y., Kim, J. S., Seong, K. A., Kim, K. Y. & Park, J. Y. 2011. Grazing impact of heterotrophic dinoflagellates and ciliates on common redtide euglenophyte Eutreptiella gymnastica in Masan Bay, Korea. Harmful Algae 10:576-588. https://doi.org/10.1016/j.hal.2011.04.008
  17. Jeong, H. J. & Latz, M. I. 1994. Growth and grazing rates of the heterotrophic dinoflagellate Protoperidinium spp. on red tide dinoflagellates. Mar. Ecol. Prog. Ser. 106:173-185. https://doi.org/10.3354/meps106173
  18. Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. https://doi.org/10.1016/j.hal.2015.06.004
  19. Jeong, H. J., Lim, A. S., Yoo, Y. D., Lee, M. J., Lee, K. H., Jang, T. Y. & Lee, K. 2014. Feeding by heterotrophic dinoflagellates and ciliates on the free-living dinoflagellate Symbiodinium sp. (Clade E). J. Eukaryot. Microbiol. 61:27-41. https://doi.org/10.1111/jeu.12083
  20. Jeong, H. J., Seong, K. A., Yoo, Y. D., Kim, T. H., Kang, N. S., Kim, S., Park, J. Y., Kim, J. S., Kim, G. H. & Song, J. Y. 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. J. Eukaryot. Microbiol. 55:271-288. https://doi.org/10.1111/j.1550-7408.2008.00336.x
  21. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  22. Johnson, M. D., Rome, M. & Stoecker, D. K. 2003. Microzooplankton grazing on Prorocentrum minimum and Karlodinium micrum in Chesapeake Bay. Limnol. Oceanogr. 48:238-248. https://doi.org/10.4319/lo.2003.48.1.0238
  23. Kang, H. C., Jeong, H. J., Jang, S. H. & Lee, K. H. 2019. Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates. Algae 34:127-140. https://doi.org/10.4490/algae.2019.34.5.29
  24. Kang, H. C., Jeong, H. J., Kim, S. J., You, J. H. & Ok, J. H. 2018. Differential feeding by common heterotrophic protists on 12 different Alexandrium species. Harmful Algae 78:106-117. https://doi.org/10.1016/j.hal.2018.08.005
  25. Kang, H. C., Jeong, H. J., Park, S. A., Eom, S. H., Ok, J. H., You, J. H., Jang, S. H. & Lee, S. Y. 2020. Feeding by the newly described heterotrophic dinoflagellate Gyrodinium jinhaense: comparison with G. dominans and G. moestrupii. Mar. Biol. 167:156. https://doi.org/10.1007/s00227-020-03769-9
  26. Kibbe, W. A. 2007. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35:W43-W46. https://doi.org/10.1093/nar/gkm234
  27. Kilias, E., Wolf, C., Nothig, E. -M., Peeken, I. & Metfies, K. 2013. Protist distribution in the Western Fram Strait in summer 2010 based on 454-pyrosequencing of 18S rDNA. J. Phycol. 49:996-1010. https://doi.org/10.1111/jpy.12109
  28. Kim, J. S. & Jeong, H. J. 2004. Feeding by the heterotrophic dinoflagellates Gyrodinium dominans and G. spirale on the red-tide dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser. 280:85-94. https://doi.org/10.3354/meps280085
  29. Kiorboe, T. & Titelman, J. 1998. Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillans. J. Plankton Res. 20:1615-1636. https://doi.org/10.1093/plankt/20.8.1615
  30. Larsen, J. 1996. Unarmoured dinoflagellates from Australian waters II. Genus Gyrodinium (Gymnodiniales, Dinophyceae). Phycologia 35:342-349. https://doi.org/10.2216/i0031-8884-35-4-342.1
  31. Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163. https://doi.org/10.4490/algae.2014.29.2.153
  32. Lee, S. Y., Jeong, H. J., Kwon, J. E., You, J. H., Kim, S. J., Ok, J. H., Kang, H. C. & Park, J. Y. 2019. First report of the photosynthetic dinoflagellate Heterocapsa minima in the Pacific Ocean: morphological and genetic characterizations and the nationwide distribution in Korea. Algae 34:7-21. https://doi.org/10.4490/algae.2019.34.2.28
  33. Lee, S. Y., Jeong, H. J., Ok, J. H., Kang, H. C. & You, J. H. 2020. Spatial-temporal distributions of the newly described mixotrophic dinoflagellate Gymnodinium smaydae in Korean coastal waters. Algae 35:225-236. https://doi.org/10.4490/algae.2020.35.8.25
  34. Lee, S. Y., Jeong, H. J., Seong, K. A., Lim, A. S., Kim, J. H., Lee, K. H., Lee, M. J. & Jang, S. H. 2017. Improved real-time PCR method for quantification of the abundance of all known ribotypes of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides by comparing 4 different preparation methods. Harmful Algae 63:23-31. https://doi.org/10.1016/j.hal.2017.01.006
  35. Lee, S. Y., Jeong, H. J., You, J. H. & Kim, S. J. 2018. Morphological and genetic characterization and the nationwide distribution of the phototrophic dinoflagellate Scrippsiella lachrymosa in the Korean waters. Algae 33:21-35. https://doi.org/10.4490/algae.2018.33.3.4
  36. Lim, A. S., Jeong, H. J., Seong, K. A., Lee, M. J., Kang, N. S., Jang, S. H., Lee, K. H., Park, J. Y., Jang, T. Y. & Yoo, Y. D. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on redtide organisms. Algae 32:199-222. https://doi.org/10.4490/algae.2017.32.8.25
  37. Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Steidinger, K. A., Millie, D. F., Bendis, B. J., Pigg, R. J. & Tester, P. A. 2003. Identification of Pfiesteria piscicida (dinophyceae) and Pfiesteria-like organisms using internal transcribed spacer-specific PCR assays. J. Phycol. 39:754-761. https://doi.org/10.1046/j.1529-8817.2003.02112.x
  38. Menden-Deuer, S., Lessard, E. J., Satterberg, J. & Grünbaum, D. 2005. Growth rates and starvation survival of three species of the pallium-feeding, thecate dinoflagellate genus Protoperidinium. Aquat. Microb. Ecol. 41:145-152. https://doi.org/10.3354/ame041145
  39. Nakamura, Y., Suzuki, S. Y. & Hiromi, J. 1995a. Growth and grazing of a naked heterotrophic dinoflagellate, Gyrodinium dominans. Aquat. Microb. Ecol. 9:157-164. https://doi.org/10.3354/ame009157
  40. Nakamura, Y., Suzuki, S. -Y. & Hiromi, J. 1995b. Population dynamics of heterotrophic dinoflagellates during a Gymnodinium mikimotoi red tide in the Seto Inland Sea. Mar. Ecol. Prog. Ser. 125:269-277. https://doi.org/10.3354/meps125269
  41. Peterson, D. H. & Festa, J. F. 1984. Numerical simulation of phytoplankton productivity in partially mixed estuaries. Estuar. Coast. Shelf. Sci. 19:563-589. https://doi.org/10.1016/0272-7714(84)90016-7
  42. Potvin, E., Hwang, Y. J., Yoo, Y. D., Kim, J. S. & Jeong, H. J. 2013. Feeding by heterotrophic protists and copepods on the photosynthetic dinoflagellate Azadinium cf. poporum from western Korean waters. Aquat. Microb. Ecol. 68:143-158. https://doi.org/10.3354/ame01603
  43. Sherr, E. B. & Sherr, B. F. 2007. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 352:187-197. https://doi.org/10.3354/meps07161
  44. Smayda, T. J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137-1153. https://doi.org/10.4319/lo.1997.42.5_part_2.1137
  45. Smith, K. F., Rhodes, L., Harwood, D. T., Adamson, J., Moisan, C., Munday, R. & Tillmann, U. 2016. Detection of Azadinium poporum in New Zealand: the use of molecular tools to assist with species isolations. J. Appl. Phycol. 28:1125-1132. https://doi.org/10.1007/s10811-015-0667-5
  46. Stern, R. F., Horak, A., Andrew, R. L., Coffroth, M. -A., Andersen, R. A., Küpper, F. C., Jameson, I., Hoppenrath, M., Veron, B., Kasai, F., Brand, J., James, E. R. & Keeling, P. J. 2010. Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS ONE 5:e13991. https://doi.org/10.1371/journal.pone.0013991
  47. Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. 2017. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 9:311-335. https://doi.org/10.1146/annurev-marine-010816-060617
  48. Strom, S. L. & Buskey, E. J. 1993. Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. Limnol. Oceanogr. 38:965-977. https://doi.org/10.4319/lo.1993.38.5.0965
  49. Takano, Y. & Horiguchi, T. 2004. Surface ultrastructure and molecular phylogenetics of four unarmored heterotrophic dinoflagellates, including the type species of the genus Gyrodinium (Dinophyceae). Phycol. Res. 52:107-116. https://doi.org/10.1111/j.1440-183.2004.00332.x
  50. Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  51. Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. 2008. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17:407-418. https://doi.org/10.1007/s10531-007-9258-3
  52. Traboni, C., Calbet, A. & Saiz, E. 2020. Effects of prey trophic mode on the gross-growth efficiency of marine copepods: the case of mixoplankton. Sci. Rep. 10:12259. https://doi.org/10.1038/s41598-020-69174-w
  53. Xu, J., Hansen, P. J., Nielsen, L. T., Krock, B., Tillmann, U. & Kiorboe, T. 2017. Distinctly different behavioral responses of a copepod, Temora longicornis, to different strains of toxic dinoflagellates, Alexandrium spp. Harmful Algae 62:1-9. https://doi.org/10.1016/j.hal.2016.11.020
  54. Yoo, Y. D., Jeong, H. J., Kim, J. S., Kim, T. H., Kim, J. H., Seong, K. A., Lee, S. H., Kang, N. S., Park, J. W., Park, J., Yoon, E. Y. & Yih, W. H. 2013a. Red tides in Masan Bay, Korea in 2004-2005: II. Daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms. Harmful Algae 30(Suppl. 1):S89-S101.
  55. Yoo, Y. D., Yoon, E. Y., Jeong, H. J., Lee, K. H., Hwang, Y. J., Seong, K. A., Kim, J. S. & Park, J. Y. 2013b. The newly described heterotrophic dinoflagellate Gyrodinium moestrupii, an effective protistan grazer of toxic dinoflagellates. J. Eukaryot. Microbiol. 60:13-24. https://doi.org/10.1111/jeu.12002
  56. Yoon, E. Y., Kang, N. S. & Jeong, H. J. 2012. Gyrodinium moestrupii n. sp., a new planktonic heterotrophic dinoflagellate from the coastal waters of western Korea: morphology and ribosomal DNA gene sequence. J. Eukaryot. Microbiol. 59:571-586. https://doi.org/10.1111/j.1550-7408.2012.00632.x
  57. You, J. H., Jeong, H. J., Kang, H. C., Ok, J. H., Park, S. A. & Lim, A. S. 2020. Feeding by common heterotrophic protist predators on seven Prorocentrum species. Algae 35:61-78. https://doi.org/10.4490/algae.2020.35.2.28

Cited by

  1. Interactions Between the Kleptoplastidic Dinoflagellate Shimiella gracilenta and Several Common Heterotrophic Protists vol.8, 2021, https://doi.org/10.3389/fmars.2021.738547