DOI QR코드

DOI QR Code

Methodology for the Observations of Stellar Occultations by Small Bodies of the Solar System

  • Salazar-Manzano, Luis E. (Observatorio Astronomico, Universidad Tecnologica de Pereira, Complejo Educativo La Julita) ;
  • Quintero, Edwin A. (Observatorio Astronomico, Universidad Tecnologica de Pereira, Complejo Educativo La Julita)
  • Received : 2020.12.04
  • Accepted : 2021.02.23
  • Published : 2021.03.15

Abstract

The observation of stellar occultations constitutes one of the most important techniques for determining the dimensions and establishing the physical parameters of small Solar System bodies. The most substantial calculations are obtained from multiple observations of the same event, which turns the observation of stellar occultations into highly collaborative work and groups teams of observers through international networks. The above situation also requires the participation of both professional and amateur observers in these collaborative networks. With the aim of promoting the participation of professional and amateur groups in the collaborative observation of stellar occultations, we present the methodology developed by the Astronomical Observatory of the Technological University of Pereira (OAUTP) for the observations of occultations due small Solar System bodies. We expose the three fundamental phases of the process: the plan to make observations, the capture of the events, and the treatment of the data. We apply our methodology using a fixed station and a mobile station to observe stellar occultations due to MBAs (354) Eleonora (61) Danae (15112) Arlenewolfe (3915) Fukushima (61788) 2000 QP181 (425) Cornelia (257) Silesia (386) Siegena and (41) Daphne, and due to TNOs 1998BU48 and (529823) 2010 PP81. The positive detections for the objects (257) Silesia (386) Siegena and (41) Daphne allow us to derive lower limits in the diameter of the MBAs of 63.1 km, 166.2 km and 158.7 km and offsets in the astrometric position (Δαc cos��c, Δ��c) of 622.30 ± 0.83, 15.23 ± 9.88 mas, 586.06 ± 1.68, 43.03 ± 13.88 mas and -413.44 ± 9.42, 234.05 ± 19.12 mas, respectively.

Keywords

References

  1. Alvarez-Candal A, Ortiz JL, Morales N, Jimenez-Teja Y, Duffard R, et al., Stellar occultation by (119951) 2002 KX14 on April 26, 2012, Astron. Astrophys. 571, A48 (2014). https://doi.org/10.1051/0004-6361/201424648
  2. Assafin M, Camargo JIB, Martins RV, Andrei AH, Sicardy B, et al., Precise predictions of stellar occultations by Pluto, Charon, Nix, and Hydra for 2008-2015, Astron. Astrophys. 515, A32 (2010). https://doi.org/10.1051/0004-6361/200913690
  3. Baron RL, Dunham EW, Elliot JL, A portable telescope, photometer, and data-recording system, Publ. Astron Soc Pac. 95, 925-937 (1983). https://doi.org/10.1086/131272
  4. Barry MAT, Gault D, Pavlov H, Hanna W, McEwan A, et al., A digital video system for observing and recording occultations, Publ. Astron. Soc. Aust. 32, e031 (2015a). https://doi.org/10.1017/pasa.2015.31
  5. Barry MT, Gault D, Bolt G, McEwan A, Filipovic MD, et al., Verifying timestamps of occultation observation systems, Publ. Astron Soc Aust. 32, e014 (2015b). https://doi.org/10.1017/pasa.2015.15
  6. Benedetti-Rossi G, Sicardy B, Buie MW, Ortiz JL, Vieira-Martins R, et al., Results from the 2014 November 15th multi-chord stellar occultation by the TNO (229762) 2007 UK126, Astron. J. 152, 6 (2016). https://doi.org/10.3847/0004-6256/152/6/156
  7. Berry R, Burnell J, The Handbook of Astronomical Image Processing (Willman-Bell, Richmond, 2000).
  8. Bottke WF Jr, Cellino A, Paolicchi P, Binzel RP, An overview of the asteroids: the asteroids III perspective, in Asteroids III, eds. Bottke WF Jr, Cellino A, Paolicchi P, Binzel RP (University of Arizona Press, Tucson, 2002). 3-15.
  9. Braga-Ribas F, Sicardy B, Ortiz JL, Lellouch E, Tancredi G, et al., The size, shape, albedo, density, and atmospheric limit of Transneptunian object (50000) Quaoar from multi-chord stellar occultations, Astrophys. J. 773, 26 (2013). https://doi.org/10.1088/0004-637X/773/1/26
  10. Braga-Ribas F, Sicardy B, Ortiz JL, Snodgrass C, Roques F, et al., A ring system detected around the Centaur (10199) Chariklo, Nature. 508, 72-75 (2014). https://doi.org/10.1038/nature13155
  11. Brown ME, On the size, shape, and density of dwarf planet Makemake, Astrophys. J. Lett. 767, L7 (2013). https://doi.org/10.1088/2041-8205/767/1/L7
  12. Buie MW, Keller JM, The research and education collaborative occultation network: a system for coordinated TNO occultation observations, Astron. J. 151, 73 (2016). https://doi.org/10.3847/0004-6256/151/3/73
  13. Buie MW, Leiva R, Keller JM, Desmars J, Sicardy B, et al., A single-chord stellar occultation by the extreme trans-neptunian object (541132) Leleakuhonua, Astron. J. 159, 230 (2020a). https://doi.org/10.3847/1538-3881/ab8630
  14. Buie MW, Porter SB, Tamblyn P, Terrell D, Parker AH, et al., Size and shape constraints of (486958) arrokoth from stellar occultations, Astron. J. 159, 130 (2020b). https://doi.org/10.3847/1538-3881/ab6ced
  15. Camargo JIB, Desmars J, Braga-Ribas F, Vieira-Martins R, Assafin M, et al., The future of stellar occultations by distant solar system bodies: perspectives from the gaia astrometry and the deep sky surveys, Planet. Space Sci. 154, 59-62 (2018). https://doi.org/10.1016/j.pss.2018.02.014
  16. Carry B, Density of asteroids, Planet. Space Sci. 73, 98-118 (2012). https://doi.org/10.1016/j.pss.2012.03.009
  17. Carry B, Vachier F, Berthier J, Marsset M, Vernazza P, et al., Homogeneous internal structure of CM-like asteroid (41) Daphne, Astron. Astrophys. 623, A132 (2019). https://doi.org/10.1051/0004-6361/201833898
  18. Castro-Chacon JH, Reyes-Ruiz M, Lehner MJ, Zhang ZW, Alcock C, et al., Occultations by small on-spherical trans-neptunian objects. I. a new event simulator for TAOS II, Public. Astron. Soc. Pac. 131, 064401 (2019). https://doi.org/10.1088/1538-3873/ab152e
  19. Curtis HD, Orbital Mechanics for Engineering Students (Butterworth-Heinemann, Oxford, 2013).
  20. Desmars J, Camargo JIB, Braga-Ribas F, Vieira-Martins R, Assafin M, et al., Orbit determination of trans-neptunian objects and centaurs for the prediction of stellar occultations. Astron. Astrophys. 584, A96 (2015). https://doi.org/10.1051/0004-6361/201526498
  21. Dias-Oliveira A, Sicardy B, Ortiz JL, Braga-Ribas F, Leiva R, et al., Study of the plutino object (208996) 2003 AZ84 from stellar occultations: size, shape, and topographic features, Astron. J. 154, 22 (2017). https://doi.org/10.3847/1538-3881/aa74e9
  22. Duffard R, Pinilla-Alonso N, Ortiz JL, Alvarez-Candal A, Sicardy B, et al., Photometric and spectroscopic evidence for a dense ring system around Centaur Chariklo, Astron. Astrophys. 568, A79 (2014). https://doi.org/10.1051/0004-6361/201424208
  23. Dunham DW, Dunham JB, Binzel RP, Evans DS, Freuh M, et al., The size and shape of (2) Pallas from the 1983 occultation of 1 Vulpeculae, Astron. J. 99, 1636-1662 (1990). https://doi.org/10.1086/115446
  24. Dunham EW, Elliot JL, Taylor BW, HOPI: a high-speed occultation photometer and imager for SOFIA, Proceedings of the SPIE, Airborne Telescope Systems, Munich, Germany, 20 Jun 2000.
  25. Durech J, Sidorin V, Kaasalainen M, DAMIT: a database of asteroid models, Astron. Astrophys. 513, A46 (2010). https://doi.org/10.1051/0004-6361/200912693
  26. Elliot JL, Stellar occultation studies of the solar system. Annu. Rev Astron. Astrophys. 17, 445-475 (1979). https://doi.org/10.1146/annurev.aa.17.090179.002305
  27. Elliot JL, Dunham E, Mink D, The rings of Uranus, Nature. 267, 328-330 (1977). https://doi.org/10.1038/267328a0
  28. Elliot JL, Dunham E, Wasserman LH, Millis RL, Churms J, The radii of Uranian rings alpha, beta, gamma, delta, epsilon, eta, 4, 5, and 6 from their occultations of SAO 158687, Astron. J. 83, 980-992 (1978). https://doi.org/10.1086/112280
  29. Elliot JL, Dunham EW, Bosh AS, Slivan SM, Young LA, et al., Pluto's atmosphere, Icarus. 77, 148-170 (1989). https://doi.org/10.1016/0019-1035(89)90014-6
  30. Elliot JL, Olkin CB, Probing planetary atmospheres with stellar occultations, Annu. Rev. Earth Planet. Sci. 24, 89-123 (1996). https://doi.org/10.1146/annurev.earth.24.1.89
  31. Elliot JL, Olkin CB, Dunham EW, Ford CH, Gilmore DK, et al., Jet-like features near the nucleus of Chiron, Nature. 373, 46-49 (1995). https://doi.org/10.1038/373046a0
  32. Elliot JL, Person MJ, Zuluaga CA, Bosh AS, Adams ER, et al., Size and albedo of Kuiper belt object 55636 from a stellar occultation, Nature. 465, 897-900 (2010). https://doi.org/10.1038/nature09109
  33. Fors O, Nunez J, Richichi A, CCD drift-scan imaging lunar occultations: a feasible approach for sub-meter class telescopes, Astron Astrophys. 378, 1100-1106 (2001). https://doi.org/10.1051/0004-6361:20011239
  34. Giorgini JD, Yeomans DK, Chamberlin AB, Chodas PW, Jacobson RA, et al., JPL's on-line solar system ephemeris and data service, Bull. Am. Astron. Soc. 28, 1099 (1997).
  35. Gulbis AAS, Elliot JL, Person MJ, Adams ER, Babcock BA, et al., Charon's radius and atmospheric constraints from observations of a stellar occultation, Nature. 439, 48-51 (2006). https://doi.org/10.1038/nature04276
  36. Hanus J, Viikinkoski M, Marchis F, Durech J, Kaasalainen M, et al., Volumes and bulk densities of forty asteroids from ADAM shape modeling, Astron. Astrophys. 601, A114 (2017). https://doi.org/10.1051/0004-6361/201629956
  37. Henden AA, Kaitchuck RH, Astronomical Photometry (Van Nostrand Reinhold, New York, 1982).
  38. Henden AA, Welch DL, Terrell D, Levine SE, The AAVSO photometric all-sky survey (APASS), Bull. Am. Astron. Soc. 41, 669 (2009).
  39. Herald D, Frappa E, Gault D, Hayamizu T, Kerr S, et al., Asteroid Occultations V3.0. NASA Planetary Data System (2019).
  40. Hubbard WB, Hunten DM, Dieters SW, Hill KM, Watson RD, Occultation evidence for an atmosphere on Pluto, Nature. 336, 452-454 (1988). https://doi.org/10.1038/336452a0
  41. Landolt AU, UBVRI photometric standard stars in the magnitude range 11.5 < V < 16.0 around the celestial equator, Astron. J. 104, 340-371 (1992). https://doi.org/10.1086/116242
  42. Lehner MJ, Wang SY, Reyes-Ruiz M, Zhang ZW, Figueroa L, et al., Status of the transneptunian automated occultation survey (TAOS II), Proceedings of the SPIE, Ground-based and Airborne Telescopes VII, Austin, TX, 6 Jul 2018.
  43. Leiva R, Sicardy B, Camargo JIB, Ortiz JL, Desmars J, et al., Size and shape of Chariklo from multi-epoch stellar occultations, Astron. J. 154, 159 (2017). https://doi.org/10.3847/1538-3881/aa8956
  44. Lockhart M, Person MJ, Elliot JL, Souza SP, PICO: portable instrument for capturing occultations, Publ. Astron. Soc. Pac. 122, 1207 (2010). https://doi.org/10.1086/656445
  45. Ma Y, Yan F, Zhu J, Kou W, Timing asteroid occultations by photometry, Icarus. 178, 284-288 (2005). https://doi.org/10.1016/j.icarus.2005.07.015
  46. Manzano LES, Patiño MAP, Manzano MAS, Santa NA, Salazar EAQ, Analysis of synchronism and response velocity in instrumental assemblies for the observation of stellar occultations, J. Phys.: Conf. Ser. 1247, 012041 (2019). https://doi.org/10.1088/1742-6596/1247/1/012041
  47. Marchis F, Kaasalainen M, Hom EFY, Berthier J, Enriquez J, et al., Shape, size and multiplicity of main-belt asteroids: I. keck adaptive optics survey, Icarus. 185, 39-63 (2006). https://doi.org/10.1016/j.icarus.2006.06.001
  48. Marciniak A, Bartczak P, Santana-Ros T, Michalowski T, Antonini P, et al., Photometry and models of selected main belt asteroids-IX. Introducing interactive service for asteroid models (ISAM), Astron. Astrophys. 545, A131 (2012). https://doi.org/10.1051/0004-6361/201219542
  49. Masiero JR, Nugent C, Mainzer AK, Wright EL, Bauer JM, et al., NEOWISE reactivation mission year three: asteroid diameters and albedos, Astron. J. 154, 168 (2017). https://doi.org/10.3847/1538-3881/aa89ec
  50. Mighell KJ, Algorithms for CCD stellar photometry, Proceedings of the Astronomical Data Analysis Software and Systems VIII, Urbana, IL, 1-4 Nov 1999.
  51. Milani A, Gronchi G, Theory of Orbit Determination (Cambridge University Press, Cambridge, 2010).
  52. Millis RL, Wasserman LH, Bowell E, Harris AW, Young JW, et al., The diameter, shape, albedo, and rotation of 47 Aglaja, Icarus. 81, 375-385 (1989). https://doi.org/10.1016/0019-1035(89)90058-4
  53. Mousis O, Hueso R, Beaulieu JP, Bouley S, Carry B, et al., Instrumental methods for professional and amateur collaborations in planetary astronomy, Exp. Astron. 38, 91-191 (2014). https://doi.org/10.1007/s10686-014-9379-0
  54. Nelder JA, Mead R, A simplex method for function minimization, Comp. J. 7, 308-313 (1965). https://doi.org/10.1093/comjnl/7.4.308
  55. Olkin CB, Elliot JL, Bus SJ, McDonald SW, Dahn CC, Astrometry of single-chord occultations: application to the 1993 triton event, Publ. Astron. Soc. Pac. 108, 202 (1996). https://doi.org/10.1086/133710
  56. Ortiz JL, Duffard R, Pinilla-Alonso N, Alvarez-Candal A, Santos-Sanz P, et al., Possible ring material around centaur (2060) Chiron, Astron. Astrophys. 576, A18 (2015). https://doi.org/10.1051/0004-6361/201424461
  57. Ortiz JL, Santos-Sanz P, Sicardy B, Benedetti-Rossi G, Berard D, et al., The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation, Nature. 550, 219-223 (2017). https://doi.org/10.1038/nature24051
  58. Ortiz JL, Sicardy B, Braga-Ribas F, Alvarez-Candal A, Lellouch E, et al., Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation, Nature. 491, 566-569 (2012). https://doi.org/10.1038/nature11597
  59. Pavlov H, Gault D, Using the windows clock with network time protocol (NTP) for occultation timing, J. Occ. Astron. 10, 10-19 (2020).
  60. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical recipes the art of scientific computing (Cambridge University Press, Cambridge, 1992).
  61. Roques F, Moncuquet M, Sicardy B, Stellar occultations by small bodies-diffraction effects, Astron. J. 93, 1549-1558 (1987). https://doi.org/10.1086/114438
  62. Ruprecht JD, Bosh AS, Person MJ, Bianco FB, Fulton BJ, et al., 29 November 2011 stellar occultation by 2060 Chiron: symmetric jet-like features, Icarus. 252, 271-276 (2015). https://doi.org/10.1016/j.icarus.2015.01.015
  63. Schindler K, Wolf J, Bardecker J, Olsen A, Müller T, et al., Results from a triple chord stellar occultation and far-infrared photometry of the trans-Neptunian object (229762) 2007 UK126, Astron. Astrophys. 600, A12 (2017). https://doi.org/10.1051/0004-6361/201628620
  64. Sicardy B, Bolt G, Broughton J, Dobosz T, Gault D, et al., Constraints on Charon's orbital elements from the double stellar occultation of 2008 June 22, Astron. J. 141, 67 (2011b). https://doi.org/10.1088/0004-6256/141/2/67
  65. Sicardy B, Ortiz JL, Assafin M, Jehin E, Maury A, et al., A Plutolike radius and a high albedo for the dwarf planet Eris from an occultation, Nature. 478, 493-496 (2011a). https://doi.org/10.1038/nature10550
  66. Sickafoose AA, Bosh AS, Levine SE, Zuluaga CA, Genade A, et al., A stellar occultation by Vanth, a satellite of (90482) Orcus, Icarus. 319, 657-668 (2019). https://doi.org/10.1016/j.icarus.2018.10.016
  67. Smart WM, Green, RM, Textbook on Spherical Astronomy (Cambridge University Press, Cambridge, 1977).
  68. Souza SP, Babcock BA, Pasachoff JM, Gulbis AAS, Elliot JL, et al., POETS: portable occultation, eclipse, and transit system, Publ. Astron. Soc. Pac. 118, 1550 (2006). https://doi.org/10.1086/509665
  69. Stansberry J, Grundy W, Brown M, Cruikshank D, Spencer J, et al., Physical properties of Kuiper belt and Centaur objects: constraints from the spitzer space telescope, in The Solar System Beyond Neptune, eds. Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A (University of Arizona Press, Tucson, 2008), 161-179.
  70. Tedesco EF, Noah PV, Noah M, Price SD, The supplemental IRAS minor planet survey, Astron. J. 123, 1056 (2002). https://doi.org/10.1086/338320
  71. Usui F, Kuroda D, Müller TG, Hasegawa S, Ishiguro M, et al., Asteroid catalog using Akari: AKARI/IRC mid-infrared asteroid survey, Publ. Astron. Soc. Jpn. 63, 1117-1138 (2011). https://doi.org/10.1093/pasj/63.5.1117
  72. Van Belle GT, Predicting stellar angular sizes, Publ. Astron. Soc. Pac. 111, 1515 (1999). https://doi.org/10.1086/316462
  73. Wasserman LH, Millis RL, Franz OG, Bowell E, White NM, et al., The diameter of Pallas from its occultation of SAO 85009, Astron. J. 84, 259-268 (1979). https://doi.org/10.1086/112416
  74. Widemann T, Sicardy B, Dusser R, Martinez C, Beisker W, et al., Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation, Icarus. 199, 458-476 (2009). https://doi.org/10.1016/j.icarus.2008.09.011
  75. Young EF, Young LA, Olkin CB, Buie MW, Shoemaker K, et al., Development and performance of the PHOT (portable high-speed occultation telescope) systems, Publ, Astron. Soc. Pac. 123, 735 (2011). https://doi.org/10.1086/660800
  76. Zacharias N, Monet DG, Levine SE, Urban SE, Gaume R, et al., The naval observatory merged astrometric dataset (NOMAD), Am. Astron. Soc., 36, 1418 (2004).