References
- Ardakani, A., Bayat, M. and Javanmard, M. (2014), "Numerical modeling of soil nail walls considering Mohr Coulomb, hardening soil and hardening soil with small-strain stiffness effect models", Geomech. Eng., 6(4), 391-401. http://dx.doi.org/10.12989/gae.2014.6.4.391.
- Arvin, M., Zakeri, A. and Shoorijeh, M.B. (2019), "Using finite element strength reduction method for stability analysis of geocell-reinforced slopes", Geotech. Geol. Eng., 37(3), 1453-1467. https://doi.org/10.1007/s10706-018-0699-0.
- Bayat, M., Bayat, M. and Pakar, I. (2018), "Nonlinear vibration of oscillatory systems using semi-analytical approach", Struct. Eng. Mech., 65(4), 409-413. http://doi.org/10.12989/sem.2018.65.4.409.
- Bayat, M., Pakar, I. and Bayat, M. (2016), "Nonlinear vibration of rested Euler-Bernoulli beams on linear elastic foundation using Hamiltonian approach", Vibroeng. Proc., 10, 89-94.
- Biswas, S. and Mittal, S. (2017), "Square footing on geocell reinforced cohesionless soils", Geomech. Eng., 13(4), 641-651. http://dx.doi.org/10.12989/gae.2017.13.4.641.
- Chen, R.H. and Chiu, Y.M. (2008), "Model tests of geocell retaining structures", Geotext. Geomembr., 26, 56-70. https://doi.org/10.1016/j.geotexmem.2007.03.001.
- Chen, R.H., Huang, Y.W. and Huang, F.C. (2013), "Confinement effect of geocells on sand samples under triaxial compression", Geotext. Geomembr., 37, 35-44. https://doi.org/10.1016/j.geotexmem.2013.01.004.
- Dai, Z., Zhang, M., Yang, L. and Zhu, H. (2018), "Model tests on performance of embankment reinforced with geocell under static and cyclic loading", Proceedings of GeoShanghai International Conference: Ground Improvement and Geosynthetics, Shanghai, China, May.
- Dash, S.K. (2010), "Influence of relative density of soil on performance of geocell reinforced sand foundations", J. Mater. Civ. Eng., 22(5), 533-538. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000040.
- Dash, S.K. (2012), ''Effect of geocell type on load carrying of geocell reinforced sand foundations", Int. J. Geomech., 12(5), 537-548. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000162.
- Dash, S.K., Krishnaswamy, N.R. and Rajagopal, K. (2001), "Bearing capacity of strip footings supported on geocell-reinforced sand", Geotext. Geomembr., 19(4), 235-256. https://doi.org/10.1016/S0266-1144(01)00006-1.
- Dash, S.K., Sireesh, S. and Sitharam, T.G. (2003), "Model studies on circular footing supported on geocell reinforced sand underlain by soft clay", Geotext. Geomembr., 21(4), 197-219. https://doi.org/10.1016/S0266-1144(03)00017-7.
- Garcia, R.S. and Neto, J.A. (2021), "Stress-dependent method for calculating the modulus improvement factor in geocell-reinforced soil layers", Geotext. Geomembr., 49(1), 146-158. https://doi.org/10.1016/j.geotexmem.2020.09.009.
- Guerrero, S.L. and Vallejo, L.E. (2010), "The effectiveness of Geosynthetic reinforcement, tamping, and stoneblowing of rail track ballast beds under dynamic loading: DEM analysis", Geomech. Eng., 2(3), 161-176. http://doi.org/10.12989/gae.2010.2.3.161.
- Guo, W., Chu, J., Yan, S. and Nie, W. (2014), "Analytical solutions for Geosynthetic tube resting on rigid foundation", Geomech. Eng., 6(1), 65-77. http://doi.org/10.12989/gae.2014.6.1.065.
- Halder, K. and Chakrabotry, D. (2020), "Influence of soil spatial variability on the response of strip footing on geocell reinforced slope", Comput. Geotech., 122, 103533. http://doi.org/10.1016/j.compgeo.2020.103533.
- Hedge, A. and Sitharam, T.G. (2016), "Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading", Geomech. Eng., 10(4), 405-422. http://doi.org/10.12989/gae.2016.10.4.405.
- Itasca (2005), Fast Lagrangian Analysis of Continua in 3 Dimensions User's Manual, Itasca Consulting Group, Minnesota, U.S.A.
- Jesmani, M., Kamalzare, M. and Sarbandi, B.B. (2016), "Seismic response of geosynthetic reinforced retaining walls", Geomech. Eng., 10(5), 635-655. http://dx.doi.org/10.12989/gae.2016.10.5.635.
- Kazemian, T. and Arvin, M.R. (2019), "Three-dimensional stability of locally loaded geocell-reinforced slopes by strength reduction method", Geomech. Eng., 14(3), 185-201. https://doi.org/10.1080/17486025.2019.1581275.
- Khalaj, O., Tafreshi, S.N.M., Masek, B. and Dawson, A.R. (2015), "Improvement of pavement foundation response with multi layers of geocell reinforcement: Cyclic plate load test", Geomech. Eng., 9(3), 373-395. http://doi.org/10.12989/gae.2015.9.3.373.
- Krishnaswamy, N.R., Rajagopal, K. and Latha, G. (2000), "Model studies on geocell supported embankments constructed over a soft clay foundation", Geotech. Test. J., 23, 45-54. https://doi.org/10.1520/GTJ11122J.
- Kumar, A., Singh, P. and Chatterjee, K. (2019), "Ground improvement using geocells to enhance traffic ability in desert soils", Geomech. Eng., 19(1), 71-78. https://doi.org/10.12989/gae.2019.19.1.071.
- Latha, G.M. (2011), "Design of geocell reinforcement for supporting embankments on soft ground", Geomech. Eng., 3(2), 117-139. http://dx.doi.org/10.12989/gae.2011.3.2.117.
- Latha, G.M. and Rajagopal, K. (2007), "Parametric finite element analyses of geocell supported embankments", Can. Geotech. J., 44(8), 917-927. https://doi.org/10.1139/T07-039.
- Latha, G.M. and Somwanshi, A. (2009), "Effect of reinforcement form on the bearing capacity of square footings on sand", Geotext. Geomembr., 27(6), 409-422. https://doi.org/10.1016/j.geotexmem.2009.03.005.
- Latha, L.G., Dash, S.K. and Rajagopal, K. (2008), "Equivalent continuum simulations of geocell reinforced sand beds supporting strip footings", Geotech. Geol. Eng., 26, 387-398. https://doi.org/10.1007/s10706-008-9176-5.
- Leshchinsky, B. and Ling, H.I. (2013), "Effects of geocell confinement on strength and deformation behavior of gravel", J. Geotech. Geoenviron. Eng., 139(2), 340-352. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000757.
- Ling, H.I., Leshchinsky, D., Wang, J.P., Mohri, Y. and Rosen, A. (2009), "Seismic response of geocell retaining walls: Experimental studies", J. Geotech. Geoenviron. Eng., 135(4), 515-524. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(515).
- Mehdipour, I., Ghazavi, M. and Moayed, R.Z. (2013), "Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect", Geotext. Geomembr., 37, 23-34. https://doi.org/10.1016/j.geotexmem.2013.01.001.
- Mehdipour, I., Ghazavi, M. and Moayed, R.Z. (2017), "Stability analysis of geocell reinforced slopes using the limit equilibrium horizontal slice method", Int. J. Geomech., 17(9), 1-15. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000935.
- Moltagh, A.T., Ghanbari, A., Abbasi, P.M. and Wu, W. (2018), "A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes", Earthq. Struct., 15(6), 687-699. http://dx.doi.org/10.12989/eas.2018.15.6.687.
- Oliaei, M. and Kouzegran, S. (2017), "Efficiency of cellular geosynthetics for foundation reinforcement", Geotext. Geomembr., 45(2), 11-22. https://doi.org/10.1016/j.geotexmem.2016.11.001.
- Ou, C.Y. (2006), Deep Excavation: Theory and Practice, CRC Press, London, U.K.
- Saride, S., Pradhan, S., Sitharam, T.G. and Puppala, A.J. (2013), "Numerical analysis of geocell reinforced ballast overlying soft clay subgrade", Geomech. Eng., 5(3), 263-281. http://doi.org/10.12989/gae.2013.5.3.263.
- Shimizu, M. and Inui, T. (1990), Increase in the Bearing Capacity of Ground with Geotextile Wall Frame, Balkema, Rotterdam, Netherlands.
- Song, F. and Tian, Y.H. (2019), "Three-dimensional numerical modelling of geocell reinforced soils and its practical application", Geomech. Eng., 17(1),1-9. https://doi.org/10.12989/gae.2019.17.1.001.
- Song, F., Liu, H.B., Chai, H.B. and Chen, J.X. (2017), "Stability analysis of geocell reinforced retaining walls", Geosynth. Int., 24(5), 442-450. https://doi.org/10.1680/jgein.17.00013.
- Song, F., Liu, H., Ma, L. and Hu, H. (2018), "Numerical analysis of geocell-reinforced retaining wall failure modes", Geotect. Geomembr., 46(18), 284-296. https://doi.org/10.1016/j.geotexmem.2018.01.004.
- Tafreshi, S.M., Shaghaghi, T., Mehrjardi, G.T., Dawson, A.R. and Ghadrdan, M. (2015), "A simplified method for predicting the settlement of circular footings on multi-layered geocellreinforced noncohesive soils", Geotext. Geomembr., 43(4), 332-344. https://doi.org/10.1016/j.geotexmem.2015.04.006.
- Tavakoli, G.H.M., Tafreshi, S.N.M. and Dawson, A.R. (2013), "Combined use of geocell reinforcement and rubber-soil mixtures to improve performance of buried pipes", Geotext. Geomembr., 34, 116-130. https://doi.org/10.1016/j.geotexmem.2012.05.004.
- Won, M.S., Lee, O., Kim, Y.S. and Choi, S. (2016), "An 12 year long term study on the external deformation behavior of Geosynthetic reinforced soil (GRS) walls", Geomech. Eng., 10(5), 565-575. http://doi.org/10.12989/gae.2016.10.5.565.
- Zhao, M. and Zhao, H. (2013), "Deformation analysis of a Geocell mattress using a decoupled iterative method", Struct. Eng. Mech., 46(6), 775-790. http://dx.doi.org/10.12989/sem.2013.46.6.775.
- Zhao, M.H., Zhang, L., Zou, X.J. and Zhao, H. (2009), "Research progress in two-direction composite foundation formed by geocell reinforced mattress and gravel piles", Chin. J. Highway Transport, 22(1), 1-10.