DOI QR코드

DOI QR Code

Numerical investigation of geocell reinforced slopes behavior by considering geocell geometry effect

  • Ardakani, Alireza (Department of Civil Engineering, Imam Khomeini International University) ;
  • Namaei, Ali (Department of Civil Engineering, Imam Khomeini International University)
  • Received : 2021.01.30
  • Accepted : 2021.03.18
  • Published : 2021.03.25

Abstract

The present study evaluates geocell reinforced slope behavior. A three dimensional analysis is carried out to simulate soil and geocell elastoplastic behavior using the finite difference software FLAC3D. In order to investigate the geocell reinforcement effect, the geocell aperture size, thickness, geocell placement condition and soil compaction had been considered as variable parameters. Moreover, a comparison is evaluated between geocell reinforcing system and conventional planar reinforcement. The obtained results showed that the pocket size, thickness and soil compaction have considerable influence on the geocell reinforcement slope performance. Moreover, it was found that the critical sliding surface was bounded by the first geocell reinforcement and the slope stability increases, by increasing the vertical space between geocell layers. In addition, the comparison between geocell and geogrid reinforcement indicates the efficiency of using cellular honeycomb geosynthetic reinforcement.

Keywords

References

  1. Ardakani, A., Bayat, M. and Javanmard, M. (2014), "Numerical modeling of soil nail walls considering Mohr Coulomb, hardening soil and hardening soil with small-strain stiffness effect models", Geomech. Eng., 6(4), 391-401. http://dx.doi.org/10.12989/gae.2014.6.4.391.
  2. Arvin, M., Zakeri, A. and Shoorijeh, M.B. (2019), "Using finite element strength reduction method for stability analysis of geocell-reinforced slopes", Geotech. Geol. Eng., 37(3), 1453-1467. https://doi.org/10.1007/s10706-018-0699-0.
  3. Bayat, M., Bayat, M. and Pakar, I. (2018), "Nonlinear vibration of oscillatory systems using semi-analytical approach", Struct. Eng. Mech., 65(4), 409-413. http://doi.org/10.12989/sem.2018.65.4.409.
  4. Bayat, M., Pakar, I. and Bayat, M. (2016), "Nonlinear vibration of rested Euler-Bernoulli beams on linear elastic foundation using Hamiltonian approach", Vibroeng. Proc., 10, 89-94.
  5. Biswas, S. and Mittal, S. (2017), "Square footing on geocell reinforced cohesionless soils", Geomech. Eng., 13(4), 641-651. http://dx.doi.org/10.12989/gae.2017.13.4.641.
  6. Chen, R.H. and Chiu, Y.M. (2008), "Model tests of geocell retaining structures", Geotext. Geomembr., 26, 56-70. https://doi.org/10.1016/j.geotexmem.2007.03.001.
  7. Chen, R.H., Huang, Y.W. and Huang, F.C. (2013), "Confinement effect of geocells on sand samples under triaxial compression", Geotext. Geomembr., 37, 35-44. https://doi.org/10.1016/j.geotexmem.2013.01.004.
  8. Dai, Z., Zhang, M., Yang, L. and Zhu, H. (2018), "Model tests on performance of embankment reinforced with geocell under static and cyclic loading", Proceedings of GeoShanghai International Conference: Ground Improvement and Geosynthetics, Shanghai, China, May.
  9. Dash, S.K. (2010), "Influence of relative density of soil on performance of geocell reinforced sand foundations", J. Mater. Civ. Eng., 22(5), 533-538. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000040.
  10. Dash, S.K. (2012), ''Effect of geocell type on load carrying of geocell reinforced sand foundations", Int. J. Geomech., 12(5), 537-548. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000162.
  11. Dash, S.K., Krishnaswamy, N.R. and Rajagopal, K. (2001), "Bearing capacity of strip footings supported on geocell-reinforced sand", Geotext. Geomembr., 19(4), 235-256. https://doi.org/10.1016/S0266-1144(01)00006-1.
  12. Dash, S.K., Sireesh, S. and Sitharam, T.G. (2003), "Model studies on circular footing supported on geocell reinforced sand underlain by soft clay", Geotext. Geomembr., 21(4), 197-219. https://doi.org/10.1016/S0266-1144(03)00017-7.
  13. Garcia, R.S. and Neto, J.A. (2021), "Stress-dependent method for calculating the modulus improvement factor in geocell-reinforced soil layers", Geotext. Geomembr., 49(1), 146-158. https://doi.org/10.1016/j.geotexmem.2020.09.009.
  14. Guerrero, S.L. and Vallejo, L.E. (2010), "The effectiveness of Geosynthetic reinforcement, tamping, and stoneblowing of rail track ballast beds under dynamic loading: DEM analysis", Geomech. Eng., 2(3), 161-176. http://doi.org/10.12989/gae.2010.2.3.161.
  15. Guo, W., Chu, J., Yan, S. and Nie, W. (2014), "Analytical solutions for Geosynthetic tube resting on rigid foundation", Geomech. Eng., 6(1), 65-77. http://doi.org/10.12989/gae.2014.6.1.065.
  16. Halder, K. and Chakrabotry, D. (2020), "Influence of soil spatial variability on the response of strip footing on geocell reinforced slope", Comput. Geotech., 122, 103533. http://doi.org/10.1016/j.compgeo.2020.103533.
  17. Hedge, A. and Sitharam, T.G. (2016), "Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading", Geomech. Eng., 10(4), 405-422. http://doi.org/10.12989/gae.2016.10.4.405.
  18. Itasca (2005), Fast Lagrangian Analysis of Continua in 3 Dimensions User's Manual, Itasca Consulting Group, Minnesota, U.S.A.
  19. Jesmani, M., Kamalzare, M. and Sarbandi, B.B. (2016), "Seismic response of geosynthetic reinforced retaining walls", Geomech. Eng., 10(5), 635-655. http://dx.doi.org/10.12989/gae.2016.10.5.635.
  20. Kazemian, T. and Arvin, M.R. (2019), "Three-dimensional stability of locally loaded geocell-reinforced slopes by strength reduction method", Geomech. Eng., 14(3), 185-201. https://doi.org/10.1080/17486025.2019.1581275.
  21. Khalaj, O., Tafreshi, S.N.M., Masek, B. and Dawson, A.R. (2015), "Improvement of pavement foundation response with multi layers of geocell reinforcement: Cyclic plate load test", Geomech. Eng., 9(3), 373-395. http://doi.org/10.12989/gae.2015.9.3.373.
  22. Krishnaswamy, N.R., Rajagopal, K. and Latha, G. (2000), "Model studies on geocell supported embankments constructed over a soft clay foundation", Geotech. Test. J., 23, 45-54. https://doi.org/10.1520/GTJ11122J.
  23. Kumar, A., Singh, P. and Chatterjee, K. (2019), "Ground improvement using geocells to enhance traffic ability in desert soils", Geomech. Eng., 19(1), 71-78. https://doi.org/10.12989/gae.2019.19.1.071.
  24. Latha, G.M. (2011), "Design of geocell reinforcement for supporting embankments on soft ground", Geomech. Eng., 3(2), 117-139. http://dx.doi.org/10.12989/gae.2011.3.2.117.
  25. Latha, G.M. and Rajagopal, K. (2007), "Parametric finite element analyses of geocell supported embankments", Can. Geotech. J., 44(8), 917-927. https://doi.org/10.1139/T07-039.
  26. Latha, G.M. and Somwanshi, A. (2009), "Effect of reinforcement form on the bearing capacity of square footings on sand", Geotext. Geomembr., 27(6), 409-422. https://doi.org/10.1016/j.geotexmem.2009.03.005.
  27. Latha, L.G., Dash, S.K. and Rajagopal, K. (2008), "Equivalent continuum simulations of geocell reinforced sand beds supporting strip footings", Geotech. Geol. Eng., 26, 387-398. https://doi.org/10.1007/s10706-008-9176-5.
  28. Leshchinsky, B. and Ling, H.I. (2013), "Effects of geocell confinement on strength and deformation behavior of gravel", J. Geotech. Geoenviron. Eng., 139(2), 340-352. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000757.
  29. Ling, H.I., Leshchinsky, D., Wang, J.P., Mohri, Y. and Rosen, A. (2009), "Seismic response of geocell retaining walls: Experimental studies", J. Geotech. Geoenviron. Eng., 135(4), 515-524. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(515).
  30. Mehdipour, I., Ghazavi, M. and Moayed, R.Z. (2013), "Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect", Geotext. Geomembr., 37, 23-34. https://doi.org/10.1016/j.geotexmem.2013.01.001.
  31. Mehdipour, I., Ghazavi, M. and Moayed, R.Z. (2017), "Stability analysis of geocell reinforced slopes using the limit equilibrium horizontal slice method", Int. J. Geomech., 17(9), 1-15. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000935.
  32. Moltagh, A.T., Ghanbari, A., Abbasi, P.M. and Wu, W. (2018), "A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes", Earthq. Struct., 15(6), 687-699. http://dx.doi.org/10.12989/eas.2018.15.6.687.
  33. Oliaei, M. and Kouzegran, S. (2017), "Efficiency of cellular geosynthetics for foundation reinforcement", Geotext. Geomembr., 45(2), 11-22. https://doi.org/10.1016/j.geotexmem.2016.11.001.
  34. Ou, C.Y. (2006), Deep Excavation: Theory and Practice, CRC Press, London, U.K.
  35. Saride, S., Pradhan, S., Sitharam, T.G. and Puppala, A.J. (2013), "Numerical analysis of geocell reinforced ballast overlying soft clay subgrade", Geomech. Eng., 5(3), 263-281. http://doi.org/10.12989/gae.2013.5.3.263.
  36. Shimizu, M. and Inui, T. (1990), Increase in the Bearing Capacity of Ground with Geotextile Wall Frame, Balkema, Rotterdam, Netherlands.
  37. Song, F. and Tian, Y.H. (2019), "Three-dimensional numerical modelling of geocell reinforced soils and its practical application", Geomech. Eng., 17(1),1-9. https://doi.org/10.12989/gae.2019.17.1.001.
  38. Song, F., Liu, H.B., Chai, H.B. and Chen, J.X. (2017), "Stability analysis of geocell reinforced retaining walls", Geosynth. Int., 24(5), 442-450. https://doi.org/10.1680/jgein.17.00013.
  39. Song, F., Liu, H., Ma, L. and Hu, H. (2018), "Numerical analysis of geocell-reinforced retaining wall failure modes", Geotect. Geomembr., 46(18), 284-296. https://doi.org/10.1016/j.geotexmem.2018.01.004.
  40. Tafreshi, S.M., Shaghaghi, T., Mehrjardi, G.T., Dawson, A.R. and Ghadrdan, M. (2015), "A simplified method for predicting the settlement of circular footings on multi-layered geocellreinforced noncohesive soils", Geotext. Geomembr., 43(4), 332-344. https://doi.org/10.1016/j.geotexmem.2015.04.006.
  41. Tavakoli, G.H.M., Tafreshi, S.N.M. and Dawson, A.R. (2013), "Combined use of geocell reinforcement and rubber-soil mixtures to improve performance of buried pipes", Geotext. Geomembr., 34, 116-130. https://doi.org/10.1016/j.geotexmem.2012.05.004.
  42. Won, M.S., Lee, O., Kim, Y.S. and Choi, S. (2016), "An 12 year long term study on the external deformation behavior of Geosynthetic reinforced soil (GRS) walls", Geomech. Eng., 10(5), 565-575. http://doi.org/10.12989/gae.2016.10.5.565.
  43. Zhao, M. and Zhao, H. (2013), "Deformation analysis of a Geocell mattress using a decoupled iterative method", Struct. Eng. Mech., 46(6), 775-790. http://dx.doi.org/10.12989/sem.2013.46.6.775.
  44. Zhao, M.H., Zhang, L., Zou, X.J. and Zhao, H. (2009), "Research progress in two-direction composite foundation formed by geocell reinforced mattress and gravel piles", Chin. J. Highway Transport, 22(1), 1-10.