References
- Alam, A.K.M.B., Niioka, M., Fujii, Y., Fukuda, D. and Kodama, J. (2014), "Effects of confining pressure on the permeability of three rock types under compression", Int. J. Rock Mech. Min. Sci., 65, 49-61. https://doi.org/10.1016/j.ijrmms.2013.11.006.
- Asadizadeh, M., Hossaini, M.F., Moosavi, M., Masoumi, H. and Ranjith, P.G. (2019), "Mechanical characterisation of jointed rock-like material with non-persistent rough joints subjected to uniaxial compression", Eng. Geol., 260, 105224. https://doi.org/10.1016/j.enggeo.2019.105224.
- Bastola, S. and Cai, M. (2019), "Investigation of mechanical properties and crack propagation in pre-cracked marbles using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach", Comput. Geotech., 110, 28-43. https://doi.org/10.1016/j.compgeo.2019.02.009.
- Bewick, R.P., Kaiser, P.K. and Amann, F. (2019), "Strength of massive to moderately jointed hard rock masses", J. Rock Mech. Geotech. Eng., 11(3), 562-575. https://doi.org/10.1016/j.jrmge.2018.10.003.
- Bruning, T., Karakus, M., Nguyen, G.D. and Goodchild, D. (2018), "Experimental study on the damage evolution of brittle rock under triaxial confinement with full circumferential strain control", Rock Mech. Rock Eng., 51(11), 3321-3341. https://doi.org/10.1007/s00603-018-1537-7.
- Chen, M., Yang, S.Q., Ranjith, P.G., Yang, W.D., Yin, P.F., Zhang, Y.C. and Zhang, Q.Y. (2019), "Fracture processes of rock-like specimens containing nonpersistent fissures under uniaxial compression", Energies 12(1), 79. https://doi.org/10.3390/en12010079.
- Chen, X., Yu, J., Tang, C.A., Li, H. and Wang, S.Y. (2017a), "Experimental and numerical investigation of permeability evolution with damage of sandstone under triaxial compression", Rock Mech. Rock Eng. 50(6), 1529-1549. https://doi.org/10.1007/s00603-017-1169-3.
- Chen, S.W., Yang, C.H. and Wang, G.B. (2017b), "Evolution of thermal damage and permeability of Beishan granite", Appl. Therm. Eng., 110, 1533-1542. https://doi.org/10.1016/j.applthermaleng.2016.09.075.
- Crider, J.G. (2015), "The initiation of brittle faults in crystalline rock", J. Struct. Geol., 77, 159-174. https://doi.org/10.1016/j.jsg.2015.05.001.
- Davy, C.A., Skoczylas, F., Barnichon, J.D. and Lebon P. (2007), "Permeability of macro-cracked argillite under confinement: Gas and water testing", Phys. Chem. Earth., 32(8-14), 66-680. https://doi.org/10.1016/j.pce.2006.02.055.
- Du, Y.T., Li, T.C., Li, W.T., Ren, Y.D., Wang, G. and He, P. (2020), "Experimental study of mechanical and permeability behaviors during the failure of sandstone containing two preexisting fissures under triaxial compression", Rock Mech. Rock Eng., 53(8), 3673-3697. https://doi.org/10.1007/s00603-020-02119-x.
- Duriez, J., Scholtes, L. and Donze, F.V. (2016), "Micromechanics of wing crack propagation for different flaw properties", Eng. Fract. Mech., 153, 378-398. https://doi.org/10.1016/j.engfracmech.2015.12.034.
- Fu, J.W., Zhang, X.Z., Zhu, W.S., Chen, K. and Guan, J.F. (2017), "Simulating progressive failure in brittle jointed rock masses using a modified elastic-brittle model and the application", Eng. Fract. Mech., 178, 212-230. https://doi.org/10.1016/j.engfracmech.2017.04.037.
- Heiland, J. (2003), "Permeability of triaxially compressed sandstone: influence of deformation and strain-rate on permeability", Pure Appl. Geophys., 160(5-6), 889-908. https://doi.org/10.1007/PL00012571.
- Hu, J., Li, S.C., Liu, H.L., Li, L.P., Shi, S.S. and Qin, C.S. (2020), "New modified model for estimating the peak shear strength of rock mass containing nonconsecutive joint based on a simulated experiment", Int. J. Geomech., 20(7), 1-10. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001732.
- Huang, C.C., Yang, W.D., Duan, K., Fang, L.D., Wang, L. and Bo, C.J. (2019), "Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression", Constr. Build. Mater., 220, 426-443. https://doi.org/10.1016/j.conbuildmat.2019.05.159.
- Huang, D., Gu, D.M., Yang, C., Huang, R.Q. and Fu, G.Y. (2016a), "Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression", Rock Mech. Rock Eng., 49, 375-399. https://doi.org/10.1007/s00603-015-0757-3.
- Huang, Y.H., Yang S.Q. and Zhao, J. (2016b) "Three-dimensional numerical simulation on triaxial failure mechanical behavior of rock-like specimen containing two unparallel fissures", Rock Mech. Rock Eng., 49(12), 4711-4729. https://doi.org/10.1007/s00603-016-1081-2.
- Jin, J., Cao, P., Chen, Y., Pu, C.Z., Mao, D.W. and Fan, X. (2017), "Influence of single flaw on the failure process and energy mechanics of rock-like material", Comput. Geotech., 86, 150-162. https://doi.org/10.1016/j.compgeo.2017.01.011.
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
- Lee, J. and Hong, J.W. (2018), "Crack initiation and fragmentation processes in pre-cracked rock-like materials", Geomech. Eng., 15(5), 1047-1059. https://doi.org/10.12989/gae.2018.15.5.1047.
- Li, T.C., Lyu, L.X., Zhang, S.L. and Sun, J.C. (2015), "Development and application of a statistical constitutive model of damaged rock affected by the load-bearing capacity of damaged elements", J. Zhejiang Univ. Sci. A, 16(8), 644-655. https://doi.org/10.1631/jzus.A1500034.
- Liu, L.W., Li, H.B., Li, X.F. and Wu, R.J. (2020), "Full-field strain evolution and characteristic stress levels of rocks containing a single pre-existing flaw under uniaxial compression", B. Eng. Geol. Environ., 79(6), 3145-3161. https://doi.org/10.1007/s10064-020-01764-4.
- Manouchehrian, A., Sharifzadeh, M., Marji, M.F. and Gholamnejad, J. (2014), "A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression", Arch. Civ. Mech. Eng., 14(1), 40-52. https://doi.org/10.1016/j.acme.2013.05.008.
- Martin, C.D. and Chandler, N.A. (1994), "The progressive fracture of lac du bonnet granite", Int. J. Rock Mech. Min. Sci., 31(6), 643-659. https://doi.org/10.1016/0148-9062(94)90005-1.
- Maruvanchery, V. and Kim, E. (2018), "Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone", Geomech. Eng,, 17(1), 57-67. https://doi.org/10.12989/gae.2019.17.1.057.
- Mondal, S., Olsen-Kettle, L. and Gross, L. (2019), "Simulating damage evolution and fracture propagation in sandstone containing a preexisting 3-D surface flaw under uniaxial compression", Int. J. Numer. Anal. Met. Geomech., 43(7), 1448-1466. https://doi.org/10.1002/nag.2908.
- Morgan, S.P., Johnson, C.A. and Einstein, H.H. (2013), "Cracking processes in barre granite: Fracture process zones and crack coalescence", Int. J. Fract., 180(2), 177-204. https://doi.org/10.1007/s10704-013-9810-y.
- Naderloo, M., Moosavi, M. and Ahmadi, M. (2019), "Using acoustic emission technique to monitor damage progress around joints in brittle materials", Theor. Appl. Fract. Mec., 104, 102368. https://doi.org/10.1016/j.tafmec.2019.102368.
- Pakzad, R., Wang, S.Y. and Sloan, S. (2018), "Numerical study of the failure response and fracture propagation for rock specimens with preexisting flaws under compression", Int. J. Geomech., 18(7), 04018070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001172.
- Park, C.H. and Bobet, A. (2010), "A crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.
- Son, M. and Adedokun, S. (2016), "Effect of joint inclination angles on the earth pressure against the support system in a jointed rock mass", KSCE J. Civ. Eng., 20(4), 1259-1266. https://doi.org/10.1007/s12205-015-0487-9.
- Tian, W.L. and Yang, S.Q. (2017), "Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled fissures under uniaxial compression", Geomech. Eng., 12(3), 541-560. https://doi.org/10.12989/gae.2017.12.3.541.
- Wang, X.T., Li, S.C., Xu, Z.H., Li, X.Z., Lin, P. and Lin, C.J. (2019), "An interval risk assessment method and management of water inflow and inrush in course of karst tunnel excavation", Tunn. Undergr. Sp. Tech., 92, 103033. https://doi.org/10.1016/j.tust.2019.103033.
- Wang, H.L., Zhao, K., Qu, X., Xu, J.R. and Cai, M. (2020), "Hydro-mechanical properties of rock-like specimens with preexisting intermittent joints", Eur. J. Environ. Civ. Eng. https://doi.org/10.1080/19648189.2020.1763853.
- Wong, L.N.Y. and Xiong, Q.Q. (2018), "A method for multiscale interpretation of fracture processes in carrara marble specimen containing a single flaw under uniaxial compression", J. Geophys. Res-Sol. Ea., 123(8), 6459-6490. https://doi.org/10.1029/2018JB015447.
- Wu, J.Y., Feng, M.M., Han, G.S., Yao, B.Y. and Ni, X.Y. (2019), "Loading rate and confining pressure effect on dilatancy, acoustic emission, and failure characteristics of fissured rock with two pre-existing flaws", Comptes Rendus Mecanique, 347(1), 62-89. https://doi.org/10.1016/j.crme.2018.10.002.
- Xiao, W.J., Zhang, D.M. and Wang, X.J. (2020), "Experimental study on progressive failure process and permeability characteristics of red sandstone under seepage pressure", Eng. Geol., 265, 105406. https://doi.org/10.1016/j.enggeo.2019.105406.
- Xu, J. and Li, Z.X. (2019), "Crack propagation and coalescence of step-path failure in rocks", Rock Mech. Rock Eng., 52(4), 965-979. https://doi.org/10.1007/s00603-018-1661-4.
- Yang, S.Q., Ranjith, P.G., Huang, Y.H., Yin, P.F., Jing, H.W., Gui, Y.L. and Yu, Q.L (2015), "Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading", Geophys. J. Int., 201, 662-682. https://doi.org/10.1093/gji/ggv023.
- Yu, J., Yao, W., Duan, K., Liu, X.Y. and Zhu, Y.L. (2020), "Experimental study and discrete element method modeling of compression and permeability behaviors of weakly anisotropic sandstones", Int. J. Rock Mech. Min. Sci., 134, 104437. https://doi.org/10.1016/j.ijrmms.2020.104437.
- Zeng, W., Yang, S.Q., Tian, W.L. and Wen, K. (2018), "Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code", J. Cent. South Univ., 25(6), 1367-1385. https://doi.org/10.1007/s11771-018-3833-5.
- Zhao, C., Niu, J.L., Zhang, Q.Z., Zhao, C.F. and Zhou, Y.M. (2019), "Failure characteristics of rock-like materials with single flaws under uniaxial compression", B. Eng. Geol. Environ., 78(1), 593-603. https://doi.org/10.1007/s10064-018-1379-2.