DOI QR코드

DOI QR Code

Dynamic stability analysis of rock tunnels subjected to impact loading with varying UCS

  • Zaid, Mohammad (Department of Civil Engineering, Aligarh Muslim University)
  • 투고 : 2020.09.21
  • 심사 : 2021.03.12
  • 발행 : 2021.03.25

초록

The present paper has been carried out to understand the effects of impact loading on the rock tunnels, constructed in different region corresponding to varying unconfined compressive strength (UCS), through finite element method. The UCS of rockmass has substantial role in the stability of rock tunnels under impact loading condition due to falling rocks or other objects. In the present study, Dolomite, Shale, Sandstone, Granite, Basalt, and Quartzite rocks have been taken into consideration for understanding of the effect of UCS that vary from 2.85 MPa to 207.03 MPa. The Mohr-Coulomb constitutive model has been considered in the present study for the nonlinear elastoplastic analysis for all the rocks surrounding the tunnel opening. The geometry and boundary conditions of the model remains constant throughout the analysis and missile has 100 kg of weight. The general hard contact has been assigned to incorporate the interaction between different parts of the model. The present study focuses on studying the deformations in the rock tunnel caused by impacting load due to missile for tunnels having different concrete grade, and steel grade. The broader range of rock strength depicts the strong relationship between the UCS of rock and the extent of damage produced under different impact loading conditions. The energy released during an impact loading simulation shows the variation of safety and serviceability of the rock tunnel.

키워드

참고문헌

  1. Abaqus, (2019), ABAQUS User's Manual, Dassault Systems.
  2. Abramson, L.W., Hansmire, W.H. and Boyce, G.M. (1993), "Performance of tunnel portals in weathered rock", Int. J. Rock Mech. Min. Sci., 30(7), 1449-1452. https://doi.org/10.1016/0148-9062(93)90136-2.
  3. Arias, D., Pando, L., Lopez-Fernandez, C., Diaz-Diaz, L.M. and Rubio-Ordonez, A. (2016), "Deep weathering of granitic rocks: A case of tunnelling in NW Spain", Catena, 137, 572-580. https://doi.org/10.1016/j.catena.2015.10.026.
  4. Azizi, F., Koopialipoor, M. and Khoshrou, H. (2019), "Estimation of rock mass squeezing potential in tunnel route (Case Study: Kerman water conveyance tunnel)", Geotech. Geol. Eng., 37(3), 1671-1685. https://doi.org/10.1007/s10706-018-0714-5.
  5. Buonsanti, M. and Leonardi, G. (2013), "3-D simulation of tunnel structures under blast loading", Arch. Civ. Mech. Eng., 13(1), 128-134. https://doi.org/10.1016/j.acme.2012.09.002.
  6. Chen, L., Zhou, Z., Zang, C., Zeng, L. and Zhao, Y. (2019), "Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine", Geomech. Eng., 18(4), 449-457. https://doi.org/10.12989/gae.2019.18.4.449.
  7. Chu, Z., Wu, Z., Liu, B. and Liu, Q. (2019), "Coupled analytical solutions for deep-buried circular lined tunnels considering tunnel face advancement and soft rock rheology effects", Tunn. Undergr. Sp. Tech., 94, 103111. https://doi.org/10.1016/j.tust.2019.103111.
  8. Do, T.N. and Wu, J.H. (2020), "Verifying discontinuous deformation analysis simulations of the jointed rock mass behavior of shallow twin mountain tunnels", Int. J. Rock Mech. Min. Sci., 130, 104322. https://doi.org/10.1016/j.ijrmms.2020.104322.
  9. Feldgun, V.R., Kochetkov, A. V., Karinski, Y.S. and Yankelevsky, D.Z. (2008), "Internal blast loading in a buried lined tunnel", Int. J. Impact Eng., 35, 172-183. https://doi.org/10.1016/j.ijimpeng.2007.01.001.
  10. Goel, M.D., Matsagar, V. and Marburg, S. (2011), "An abridged review of blast wave parameters", Defence Sci. J., 62(5), 300-306. https://doi.org/10.14429/dsj.62.1149
  11. Gschwandtner, G.G. and Galler, R. (2013), "Laugungsversuche als Grundlage zur Stabilitatsuntersuchung von Grubengebauden in wasserloslichen Gebirgsformationen [Leaching Experiments as Basis for the Stability Analysis of Underground Structures in Water-Soluble Rock Formations]", BHM Berg- und Huttenmannische Monatshefte, 158, 493-500. https://doi.org/10.1007/s00501-013-0202-4.
  12. Gupta, A.S. (1997), "Engineering behavior and classification of weathering rock", Indian Institute of Technology Delhi, Delhi, India.
  13. Gurocak, Z. and Yalcin, E. (2016), "Excavatability and the effect of weathering degree on the excavatability of rock masses: An example from Eastern Turkey", J. African Earth Sci., 118, 1-11. https://doi.org/10.1016/j.jafrearsci.2016.02.017.
  14. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M.S.B. and Karimzade, K. (2015), "Simplified damage plasticity model for concrete", Struct. Eng. Int., 27(1), 68-78. https://doi.org/10.2749/101686616X1081.
  15. Han, Y. and Liu, H. (2016), "Failure of circular tunnel in saturated soil subjected to internal blast loading", Geomech. Eng., 11(3), 421-438. https://doi.org/10.12989/gae.2016.11.3.421.
  16. Han, Y., Zhang, L. and Yang, X. (2016), "Soil-tunnel interaction under medium internal blast loading", Procedia Eng., 143, 403-410. https://doi.org/10.1016/j.proeng.2016.06.051.
  17. Huang, F., Wu, C., Jang, B.A., Hong, Y., Guo, N. and Guo, W. (2020), "Instability mechanism of shallow tunnel in soft rock subjected to surcharge loads", Tunn. Undergr. Sp. Tech., 99, 103350. https://doi.org/10.1016/j.tust.2020.103350.
  18. Huang, X., Zhang, J., Yang, L., Yang, S. and Wang, X. (2016), "Elasto-plastic analysis of the surrounding rock mass in circular tunnel based on the generalized nonlinear unified strength theory", Int. J. Min. Sci. Technol., 26(5), 819-823. https://doi.org/10.1016/j.ijmst.2016.05.043.
  19. IS456 (2000), Plain and Reinforced Concrete - Code of Practice, Parliament of India, New Delhi, India.
  20. Jeon, S., Kim, T.H. and You, K.H. (2015), "Characteristics of crater formation due to explosives blasting in rock mass", Geomech. Eng., 9(3), 329-344. https://doi.org/10.12989/gae.2015.9.3.329.
  21. Johnson, G.R. and Cook, W.H. (1983), "A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures", Proceedings of 7th International Symposium on Ballistics, Hague, The Netherlands, April.
  22. Kargar, A.R. (2019), "An analytical solution for circular tunnels excavated in rock masses exhibiting viscous elastic-plastic behaviour", Int. J. Rock Mech. Min. Sci., 124, 104128. https://doi.org/10.1016/j.ijrmms.2019.104128.
  23. Kim, D. and Park, K. (2019), "Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber", Geomech. Eng., 19(4), 361-368. https://doi.org 10.12989/gae.2019.19.4.361.
  24. Koneshwaran, S., Thambiratnam, D.P. and Gallage, C. (2015), "Blast response of segmented bored tunnel using coupled SPHFE method", Structures, 2, 58-71. https://doi.org/10.1016/j.istruc.2015.02.001.
  25. Kristoffersen, M., Minoretti, A. and Borvik, T. (2019), "On the internal blast loading of submerged floating tunnels in concrete with circular and rectangular cross-sections", Eng. Fail. Anal., 103, 462-480. https://doi.org/10.1016/j.engfailanal.2019.04.074.
  26. Kumar, A. (2019), "Engineering behavior of oil shale under high pressure after thermal treatment", Ph.D. Thesis, IIT Delhi, Delhi, India.
  27. Lane, K.S. (2019), Tunnels and underground excavations, https://www.britannica.com/technology/tunnel.
  28. Lee, C.J. (2012), "Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock", Tunn. Undergr. Sp. Tech., 32, 132-142. https://doi.org/10.1016/j.tust.2012.06.005.
  29. Li, C. and Li, X. (2018), "Influence of wavelength-to-tunnel-diameter ratio on dynamic response of underground tunnels subjected to blasting loads", Int. J. Rock Mech. Min. Sci., 112, 323-338. https://doi.org/10.1016/j.ijrmms.2018.10.029.
  30. Li, X., Li, C., Cao, W. and Tao, M. (2018), "Dynamic stress concentration and energy evolution of deep-buried tunnels under blasting loads", Int. J. Rock Mech. Min. Sci., 104, 131-146. https://doi.org/10.1016/j.ijrmms.2018.02.018.
  31. Limited, D.M.R.C., (2015), Design Specifications, Barakhamba road, New Delhi, India.
  32. Liu, Q., Xu, X. and Wu, Z. (2020), "A GPU-based numerical manifold method for modeling the formation of the excavation damaged zone in deep rock tunnels", Comput. Geotech., 118, 103351. https://doi.org/10.1016/j.compgeo.2019.103351.
  33. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  34. McQueen, L.B., Purwodihardjo, A. and Barrett, S.V.L. (2019), "Rock mechanics for design of Brisbane tunnels and implications of recent thinking in relation to rock mass strength", J. Rock Mech. Geotech. Eng., 11(3), 676-683. https://doi.org/10.1016/j.jrmge.2019.02.001.
  35. Mishra, S. (2019), "Physical and numerical modeling of tunnels under impact and blast loads", Ph.D. Thesis, IIT Delhi, Delhi, India.
  36. Mishra, S., Rao, S., Gupta, N.K. and Kumar, A. (2018), "Damage to shallow tunnels in different geomaterials under static and dynamic loading", Thin-Walled Struct., 126, 138-149. https://doi.org/10.1016/j.tws.2017.11.051
  37. Mitelman, A. and Elmo, D. (2014), "Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach", J. Rock Mech. Geotech. Eng., 6(6), 565-573. https://doi.org/10.1016/j.jrmge.2014.09.002.
  38. Naqvi, M.W., Akhtar, M.F., Zaid, M. and Sadique, M.R. (2021), "Effect of superstructure on the stability of underground tunnels", Transp. Infrastruct. Geotechnol., 1-20. https://doi.org/10.1007/s40515-020-00119-6.
  39. Ozacar, V. (2018), "New methodology to prevent blasting damages for shallow tunnel", Geomech. Eng., 15(6), 1227-1236. https://doi.org/10.12989/gae.2018.15.6.1227.
  40. Park, D. and Michalowski, R.L. (2020), "Three-dimensional roof collapse analysis in circular tunnels in rock", Int. J. Rock Mech. Min. Sci., 128, 104275. https://doi.org/10.1016/j.ijrmms.2020.104275.
  41. Pojani, D. and Stead, D. (2015), "Sustainable urban transport in the developing world: Beyond megacities", Sustainability, 7, 7784-7805. https://doi.org/10.3390/su7067784.
  42. Qin, C.B., Yang, X.L., Pan, Q.J., Sun, Z.B., Wang, L.L. and Miao, T. (2015), "Upper bound analysis of progressive failure mechanism of tunnel roofs in partly weathered stratified Hoek-Brown rock masses", Int. J. Rock Mech. Min. Sci., 74, 157-162. https://doi.org/10.1016/j.ijrmms.2014.10.002.
  43. Rahaman, O. and Kumar, J. (2020), "Stability analysis of twin horse-shoe shaped tunnels in rock mass", Tunn. Undergr. Sp. Tech., 98, 103354. https://doi.org/10.1016/j.tust.2020.103354.
  44. Rasmussen, L.L., Cacciari, P.P., Futai, M.M., de Farias, M.M. and de Assis, A.P. (2019), "Efficient 3D probabilistic stability analysis of rock tunnels using a Lattice Model and cloud computing", Tunn. Undergr. Sp. Tech., 85, 282-293. https://doi.org/10.1016/j.tust.2018.12.022.
  45. Sharma, H., Mishra, S., Rao, K.S. and Gupta, N.K. (2018), "Effect of cover depth on deformation in tunnel lining when subjected to impact load", Proceedings of the 10th Asian Rock Mechanics Symposium, Singapore.
  46. Shi, C., Zhao, Q., Lei, M. and Peng, M. (2019), "Vibration velocity control standard of buried pipeline under blast loading of adjacent tunnel", Soils Found., 59, 2195-2205. https://doi.org/10.1016/j.sandf.2019.12.003.
  47. Shirlaw, J.N. (2016), "Pressurised TBM tunnelling in mixed face conditions resulting from tropical weathering of igneous rock", Tunn. Undergr. Sp. Tech., 57, 1-16. https://doi.org/10.1016/j.tust.2016.01.018.
  48. Shrestha, G.L. and Broch, E. (2008), "Influences of the valley morphology and rock mass strength on tunnel convergence: With a case study of Khimti 1 headrace tunnel in Nepal", Tunn. Undergr. Sp. Tech., 23(6), 638-650. https://doi.org/10.1016/j.tust.2007.12.006
  49. Sofianos, A.I. and Nomikos, P.P. (2006), "Equivalent Mohr-Coulomb and generalized Hoek-Brown strength parameters for supported axisymmetric tunnels in plastic or brittle rock", Int. J. Rock Mech. Min. Sci., 43, 683-704. https://doi.org/10.1016/j.ijrmms.2005.11.006.
  50. Song, K.I., Cho, G.C. and Lee, S.W. (2011), "Effects of spatially variable weathered rock properties on tunnel behaviour", Probabilist. Eng. Mech., 26(3), 413-426. https://doi.org/10.1016/j.probengmech.2010.11.010.
  51. Song, Z.P., Li, S.H., Wang, J.B., Sun, Z.Y., Liu, J. and Chang, Y.Z. (2018), "Determination of equivalent blasting load considering millisecond delay effect", Geomech. Eng., 15(2), 745-754. https://doi.org/10.12989/gae.2018.15.2.745.
  52. Systemes, D. (2014), Abaqus 6.14 Documentation, Dassault Systemes, Providence, Rhode Island, U.S.A.
  53. Uyar, G.H. and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545.
  54. Vidanovic, N., Rasuo, B., Kastratovic, G., Maksimovic, S., Curcic, D. and Samardzic, M. (2017), "Aerodynamic-structural missile fin optimization", Aerosp. Sci. Technol., 65, 26-45. https://doi.org/10.1016/j.ast.2017.02.010.
  55. Wang, X. and Cai, M. (2020), "A DFN-DEM multi-scale modeling approach for simulating tunnel excavation response in jointed rock masses", Rock Mech. Rock Eng., 53, 1053-1077. https://doi.org/10.1007/s00603-019-01957-8.
  56. Xia, Q., Zhang, L., Dong, H., Li, Z., Zhang, Y., Hu, J., Chen, H. and Chen, Y. (2020), "Bio-weathering of a uranium-bearing rhyolitic rock from Xiangshan uranium deposit, Southeast China", Geochim. Cosmochim. Acta, 279, 88-106. https://doi.org/10.1016/j.gca.2020.03.044.
  57. Xiang, Y. and Yang, Y. (2017), "Spatial dynamic response of submerged floating tunnel under impact load", Mar. Struct., 53, 20-31. https://doi.org/10.1016/j.marstruc.2016.12.009.
  58. Yang, G., Wang, G., Lu, W., Yan, P. and Chen, M. (2019), "Damage assessment and mitigation measures of underwater tunnel subjected to blast loads", Tunn. Undergr. Sp. Tech., 94, 103131. https://doi.org/10.1016/j.tust.2019.103131.
  59. Yang, J., Cai, J., Yao, C., Li, P., Jiang, Q. and Zhou, C. (2019), "Comparative study of tunnel blast-induced vibration on tunnel surfaces and inside surrounding rock", Rock Mech. Rock Eng., 52(11), 4747-4761. https://doi.org/10.1007/s00603-019-01875-9.
  60. Zaid, M. and Mishra, S. (2021), "Numerical analysis of shallow tunnels under static loading: A finite element approach", Geotech. Geol. Eng., 1-27. https://doi.org/10.1007/s10706-020-01647-1
  61. Zaid, M. and Rehan Sadique, M. (2021a), Dynamic Analysis of Tunnels in Western Ghats of Indian Peninsula: Effect of Shape and Weathering, in Recent Trends in Civil Engineering, Springer, Singapore, 763-776.
  62. Zaid, M. and Rehan Sadique, M. (2021b), "A simple approximate simulation using coupled Eulerian-Lagrangian (CEL) simulation in investigating effects of internal blast in rock tunnel", Indian Geotech. J., 1-18. https://doi.org/10.1007/s40098-021-00511-0.
  63. Zaid, M. and Sadique, M.R. (2020a), "Blast resistant behaviour of tunnels in sedimentary rocks", Int. J. Prot. Struct. https://doi.org/10.1177/2041419620951211.
  64. Zaid, M. and Sadique, M.R. (2020b), "The response of rock tunnel when subjected to blast loading: Finite element analysis", Eng. Reports. https://doi.org/10.1002/eng2.12293.
  65. Zaid, M., Mishra, S. and Rao, K.S. (2019a), "Stability of different shapes of Himalayan tunnels under blast loading", Proceedings of the 8th Indian Rock Conference, New Delhi, India.
  66. Zaid, M., Mishra, S. and Rao, K.S. (2020a), Finite Element Analysis of Static Loading on Urban Tunnels., in Geotechnical Characterization and Modelling, Springer, Singapore, 807-823.
  67. Zaid, M., Sadique, M.R. and Alam, M.M. (2021), "Blast analysis of tunnels in Manhattan-Schist and Quartz-Schist using coupled-Eulerian-Lagrangian method", Innov. Infrastruct. Solut., 6(2), 1-10. https://doi.org/10.1007/s41062-020-00446-0.
  68. Zaid, M., Sadique, M.R. and Samanta, M. (2020b), "Effect of unconfined compressive strength of rock on dynamic response of shallow unlined tunnel", SN Appl. Sci., 2(12), 1-13. https://doi.org/10.1007/s42452-020-03876-8.
  69. Zaid, M., Shah, I.A. and Farooqi, M.A. (2019b), "Effect of cover depth in unlined Himalayan Tunnel: A finite element approach", Proceedings of the 8th Indian Rock Conference, New Delhi, India.
  70. Zareifard, M.R. (2020), "A new semi-numerical method for elastoplastic analysis of a circular tunnel excavated in a Hoek-Brown strain-softening rock mass considering the blast-induced damaged zone", Comput. Geotech., 122, 103476. https://doi.org/10.1016/j.compgeo.2020.103476.
  71. Zhang, J.Z., Zhou, X.P. and Yin, P. (2019), "Visco-plastic deformation analysis of rock tunnels based on fractional derivatives", Tunn. Undergr. Sp. Tech., 85, 209-219. https://doi.org/10.1016/j.tust.2018.12.019.
  72. Zhao, Y., Yang, H., Chen, Z., Chen, X., Huang, L. and Liu, S. (2019), "Effects of jointed rock mass and mixed ground conditions on the cutting efficiency and cutter wear of tunnel boring machine", Rock Mech. Rock Eng., 52, 1303-1313. https://doi.org/10.1007/s00603-018-1667-y.
  73. Zhou, L., Zhu, Z., Dong, Y., Ying, P. and Wang, M. (2019), "Study of the fracture behavior of mode I and mixed mode I/II cracks in tunnel under impact loads", Tunn. Undergr. Sp. Tech., 84, 11-21. https://doi.org/10.1016/j.tust.2018.10.018.
  74. Zhou, L., Zhu, Z., Wang, M., Ying, P. and Dong, Y. (2018), "Dynamic propagation behavior of cracks emanating from tunnel edges under impact loads", Soil Dyn. Earthq. Eng., 105, 119-126. https://doi.org/10.1016/j.soildyn.2017.12.012.