References
- Ahmed, E., Fumagalli, A. and Budisa, A. (2019), "A multiscale flux basis for mortar mixed discretizations of reduced Darcy-Forchheimer fracture models", Comput. Method. Appl. Mech. Eng., 354, 16-36. https://doi.org/10.1016/j.cma.2019.05.034.
- Celik, F. (2019), "The observation of permeation grouting method as soil improvement technique with different grout flow models", Geomech. Eng., 17(4), 367-374. https://doi.org/10.12989/gae.2019.17.4.367.
- Dong, D., Sun, W. and Xi, S. (2012), "Optimization of mine drainage capacity using FEFLOW for the No. 14 coal seam of China's Linnancang Coal Mine", Mine Water Environ., 31(4), 353-360. https://doi.org/10.1007/s10230-012-0205-5.
- Deng, D.P., Li, L. and Zhao, L.H. (2019), "Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design", Geomech. Eng., 17(2), 181-194. https://doi.org/10.12989/gae. 2019.17.2.181.
- Feng, Q., Yuan, X. and Zhan, H. (2019), "Flow to a partially penetrating well with variable discharge in an anisotropic two-layer aquifer system", J. Hydrol., 578(124027). https://doi.org/10.1016/j.jhydrol.2019.124027.
- Feng, X. and Ding, W. (2007), "Experimental study of limestone micro-fracturing under a coupled stress, fluid flow and changing chemical environment", Int. J. Rock Mech. Min. Sci., 44(3), 437-448. https://doi.org/10.1016/j.ijrmms.2006.07.012.
- FiaFR (2020), Flow in a Fractured Reservoir 90421; COMSOL Inc. http://cn.comsol.com/model/flow-in-a-fractured-reservoir90421.
- Hu, Z.Q., Chen, C., Xiao, W., Wang, X.J. and Gao, M.J. (2016), "Surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region", Int. J. Coal Sci. Technol., 3(3), 339-348. https://doi.org/10.1007/s40789-016-0144-z.
- Huang, H. (2017), "Optimization research on dewatering technology of roof water in Jinjie mine", Ph.D. Dissertation, Graduate School of China Coal Research Institute, Beijing, China.
- Ji, Y., and Li, X. (2018), "Analysis on Geo-stress and casing damage based on fluid-solid coupling for Q9G3 block in Jibei oil field", Geomech. Eng., 15(1), 677-686. https://doi.org/10.12989/gae.2018.15.1.677.
- Kim, J., Kim, J., Lee, J. and Yoo, H. (2018), "Prediction of transverse settlement trough considering the combined effects of excavation and groundwater depression", Geomech. Eng., 15(3), 851-859. https://doi.org/10.12989/gae.2018.15.3.851.
- Kim, N., Park, D., Jung, H. and Kim, M. (2020), "Deformation characteristics of tunnel bottom after construction under geological conditions of long-term deformation", Geomech. Eng., 21(2), 171-178. https://doi.org/10.12989/gae.2020.21.2.171.
- Li, B., Fang, H., Yang, K., He, H., Tan, P. and Wang, F. (2019), "Mechanical response and parametric sensitivity analyses of a drainage pipe under multiphysical coupling conditions", Complexity, 3635621. https://doi.org/10.1155/2019/3635621.
- Loupasakis, C., Angelitsa, V., Rozos, D. and Spanou, N. (2014), "Mining geohazards-land subsidence caused by the dewatering of opencast coal mines: The case study of the Amyntaio coal mine, Florina, Greece", Nat. Hazards, 70(1), 675-691. https://doi.org/10.1007/s11069-013-0837-1.
- Louis, C. (1974), Rock Hydraulics, in Rock Mechanics, Springer, Vienna, Austria.
- Ma, D., Rezania, M., Yu, H. and Bai, H. (2017), "Variations of hydraulic properties of granular sandstones during water inrush: Effect of small particle migration", Eng. Geol., 217, 61-70. https://doi.org/10.1016/j.enggeo.2016.12.006.
- Ma, D., Wang, J. and Li, Z. (2019), "Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar", Environ. Sci. Pollut. R., 26(19), 19719-19728. https://doi.org/10.1007/s11356-019-05311-x.
- Meng, L., Feng, Q. and Li, Q. (2018), "Coupled simulation-optimization model for draining confined aquifer via underground boreholes to prevent water inrush of coal mines", Environ. Earth Sci., 77(17), 607. https://doi.org/10.1007/s12665-018-7794-7.
- Palmer, I. (2009), "Permeability changes in coal: Analytical modeling", Int. J. Coal Geol., 77(1-2), 119-126. https://doi.org/10.1016/j.coal.2008.09.006.
- Rongved, M. and Cerasi, P. (2019), "Simulation of stress hysteresis effect on permeability increase risk along a fault", Energies, 12(18), 3458. https://doi.org/10.3390/en12183458.
- Rutqvist, J. and Tsang, C. (2002), "A study of caprock hydromechanical changes associated with CO2-injection into a brine formation", Environ. Geol., 42(2-3), 296-305. https://doi.org/10.1007/s00254-001-0499-2.
- Samani, N., Kompani-Zare, M., Seyyedian, H. and Barry, D.A. (2006), "Flow to horizontal drains in isotropic unconfined aquifers", J. Hydrol., 324(1-4), 178-194. https://doi.org/10.1016/j.jhydrol.2005.10.003.
- Shu, C.X. (2019), "The mechanism and prevention of rock burst at the water-rich working face in the deep zone of mine in the adjacent area of Shaanxi and Inner Mongolia", Ph.D. Dissertation, University of Science and Technology Beijing, Beijing, China.
- Sun, W.J., Zhou, W.F. and Jiao, J. (2016), "Hydrogeological classification and water inrush accidents in China's coal mines", Mine Water Environ., 35(2), 214-220. https://doi.org/10.1007/s10230-015-0363-3.
- Taleghani, A. D., Gonzalez-Chavez, M., Yu, H., and Asala, H. (2018), "Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model", J. Petrol. Sci. Eng., 165, 42-57. https://doi.org/10.1016/j.petrol.2018.01.063.
- Wang, B., Wu, C., Kang, L.G., Reniers, G. and Huang, L. (2018), "Work safety in China's thirteenth five-year plan period (2016-2020): Current status, new challenges and future tasks", Safety Sci., 104, 164-178. https://doi.org/10.1016/j.ssci.2018.01.012.
- Wu, Q., Liu, Y., Wu, X., Liu, S., Sun, W. and Zeng, Y. (2016), "Assessment of groundwater inrush from underlying aquifers in Tunbai coal mine, Shanxi province, China", Environ. Earth Sci., 75(7379). https://doi.org/10.1007/s12665-016-5542-4.
- Yao, Q.L. (2011), "Researches on strength weakening mechanism and control of water-enriched roofs of roadway", Ph.D. Dissertation, China University of Mining and Technology, Xuzhou, China.
- Yasuhara, H., Kinoshita, N., Ohfuji, H., Lee, D.S., Nakashima, S. and Kishida, K. (2011), "Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model", Appl. Geochem., 26(12), 2074-2088. https://doi.org/10.1016/j.apgeochem.2011.07.005.
- Zhang, Q. (2020), "Hydromechanical modeling of solid deformation and fluid flow in the transversely isotropic fissured rocks", Comput. Geotech., 128, 103812. https://doi.org/10.1016/j.compgeo.2020.103812.
- Zhang, Q., Yan, X. and Shao, J. (2021), "Fluid flow through anisotropic and deformable double porosity media with ultralow matrix permeability: A continuum framework", J. Petrol. Sci. Eng., 200, 108349. https://doi.org/10.1016/j.petrol.2021.108349.
- Zhao, C., Jin, D., Geng, J. and Sun, Q. (2019a), "Numerical simulation of the groundwater system for mining shallow buried coal seams in the ecologically fragile areas of Western China", Mine Water Environ., 38(1), 158-165. https://doi.org/10.1007/s10230-018-0551-z.
- Zhao, C., Jin, D., Wang, H., Wang, Q., Wang, S. and Liu, Y. (2019b), "Construction and application of overburden damage and aquifer water loss model in medium-deep buried coal seam mining in Yushen mining area", J. China Coal Soc., 44(7), 2227-2235. https://doi.org/10.13225/j.cnki.jccs.2019.0159.
- Zhao, J.H., Zhang, X.G., Jiang, N., Yin, L.M. and Guo, W.J. (2020a), "Porosity zoning characteristics of fault floor under fluid-solid coupling", B. Eng. Geol. Environ., 78(8), 6267-6283. https://doi.org/10.1007/s10064-019-01508-z.
- Zhao, Y., Wu, Q., Chen, T., Zhang, X., Du, Y. and Yao, Y. (2020b), "Location and flux discrimination of water inrush using its spreading process in underground coal mine", Safety Sci., 124, 104566. https://doi.org/10.1016/j.ssci.2019.104566.
- Zhou, F., Sun, W., Shao, J., Kong, L. and Geng, X. (2020), "Experimental study on nano silica modified cement base grouting reinforcement materials", Geomech. Eng., 20(1), 67-73. https://doi.org/10.12989/gae.2020.20.1.067.
Cited by
- Mathematical Evaluation on the Control of Mining-Induced Ground Subsidence in Thick Loose Strata vol.6, pp.50, 2021, https://doi.org/10.1021/acsomega.1c04970