References
- Ahmed, S., Lovely C.W. and Diamond, S. (1974), "Pore sizes and strength of compacted clay", J. Geotech. Eng. Div., 100(GT4), 407-425. https://doi.org/10.1680/geot.1974.24.2.223.
- Alshihabi, O., Shahrour, I. and Mieussens, C. (2002), "Chemomechanical coupling in saturated porous media: Elastic-plastic behaviour of homoionic expansive clays", Int. J. Solids Struct., 10(39), 2773-2806. https://doi.org/10.1016/S0020-7683(02)00151-8.
- Assallay, A.M., Rogers, C.D.F. and Smalley, I.J. (1997), "Formation and collapse of metastable particle packings and open structures in loess deposits", Eng. Geol., 48(1-2), 101-115. https://doi.org/10.1016/S0013-7952(97)81916-3.
- Casini, F., Vaunat, J. and Romero, E. (2012), "Consequences on water retention properties of double-porosity features in a compacted silt", Acta Geotech., 7(2), 139-150. https://doi.org/10.1007/s11440-012-0159-6.
- Chang, C.C. and Cheng, D.H. (2018), "Predicting the soil water retention curve from the particle size distribution based on a pore space geometry containing slit-shaped spaces", Hydrol. Earth Syst. Sci., 22, 4621-4632. https://doi.org/10.5194/hess-22-4621-2018
- Chen, B., Sun, D.A. and Jin, P. (2019), "Experimental study of the effect of microstructure on the permeability of saturated soft clays", Geomech. Eng., 18(1), 49-58. https://doi.org/10.12989/gae.2019.18.1.049.
- Chen, R.P., Qi, S., Wang, H.L. and Cui, Y.J. (2019), "Microstructure and hydraulic properties of coarse grained subgrade soil used in high-speed railway at various compaction degrees", J. Mater. Civ. Eng., 31(12),04019301. https://doi/10.1061/(ASCE)MT.1943-5533.0002972.
- Collins, K. and McGown, A. (1974), "The form and function of microfabric features in a variety of natural soils", Geotechnique., 24(2), 223-254. https://doi.org/10.1680/geot.1974.24.2.223.
- Cui, Y.J. and Delage, P. (1996), "Yielding and plastic behaviour of an unsaturated compacted silt", Geotechnique, 46(2), 291-311. https://doi.org/10.1680/geot.1996.46.2.291.
- Cuisinier, O. and Masrouri, F. (2005), "Hydromechanical behaviour of a compacted swelling soil over a wide suction range", Eng. Geol., 81, 204-212. https://doi.org/10.1016/j.enggeo.2005.06.008.
- Delage. P., Marcial, D., Cui, Y.J. and Ruiz, X. (2006), "Ageing effects in a compacted bentonite: A microstructure approach", Geotechnique., 56, 291-304. https://doi.org/10.1680/geot.2006.56.5.291.
- Derbyshire, E. and Mellors, T.W. (1988), "Geological and geotechnical characteristics of some loess and loessic soils from China and Britain: a comparison", Eng. Geol., 25(2), 135-175. https://doi.org/10.1016/0013-7952(88)90024-5.
- Dijkstra, T.A., Smalley, I.J. and Rogers, C.D.F. (1995), "Particle packing in loess deposits and the problem of structure collapse and hydroconsolidation", Eng. Geol., 40, 49-64. https://doi.org/10.1016/0148-9062(96)81826-2.
- Estabragh, A.R. and Javadi, A.A. (2015), "Effect of soil density and suction on the elastic and plastic parameters of unsaturated silty soil", Int. J. Geomech., 15(5), 1-12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000422.
- Fredlund, D.J. and Rahardjo, H. (1993), Soil Mechanics for Unsaturated Soils, John Wiley & Sons, New York, U.S.A.
- Haeri, M., Khosravi, A., Garakani, A.A. and Ghazizadeh, S. (2016), "Effffect of soil structure and disturbance on hydromechanical behavior of collapsible loessial soils", Int. J. Geomech., 17(1), 04016021-1-04016021-15. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000656.
- Hu, C.M., Wang, X.Y., Mei, Y., Yuan, Y.L. and Zhang, S.S. (2018), "Compaction techniques and construction parameters of loess as filling material", Geomech. Eng., 15(6), 1143-1151. https://doi.org/10.12989/gae.2018.15.6.1143.
- Kim, D. and Kang, S.S. (2013), "Engineering properties of compacted loesses as construction materials", KSCE. J. Civ. Eng., 17(2),335-341. https://doi.org/10.1007/s12205-013-0872-1.
- Kruse Gerard, A.M., Dijkstra, A.M. and Schokking, F. (2007), "Effect of soil structure on soil behaviour: illustrated with loess, glacially loaded clay and simulated flaster bedding examples", Eng. Geol., 91, 34-45. https://doi.org/10.1016/j.enggeo.2006.12.011.
- Lloret, A., Villar, M. V., Sanchez, M., Gens, A., Pintado, X. and Alonso, E.E. (2003), "Mechanical behaviour of heavily compacted bentonite under high suction changes", Geotechnique, 53(1), 27-40. https://doi.org/10.1680/geot.2003.53.1.27.
- Mancuso, C., Vassallo, R. and Onofrio, A. (2002), "Small strain behavior of a silty sand in controlled-suction resonant columntorsional shear tests", Can. Geotech. J., 31(1), 22-31. https://doi.org/10.1139/t01-076.
- Monroy, R., Zdravkovic, L. and Ridley, A. (2010), "Evolution of microstructure in compacted London clay during wetting and loading", Geotechnique, 60(2), 105-119. https://doi.org/10.1680/geot.8.P.125.
- Munoz-Castelblanco, J.A., Pereira, J.M., Delage, P. and Cui, Y.J. (2012), "The water retention properties of a natural unsaturated loess from Northern France", Geotechnique, 62(2), 95-106. https://doi.org/10.1680/geot.9.p.084.
- Ng, CWW., Sadeghi, H., Hossen, S.B., Chiu, C.F., Alonso, E.E. and Baghbanrezvan, S. (2016), "Water retention and volumetric characteristics of intact and re-compacted loess", Can. Geotech. J., 53(8), 1258-1269. https://doi.org/10.1139/cgj-2015-0364.
- Niu, G., Shao, L., Sun, D.A. and Guo, X. (2020), "A simplified directly determination of soil-water retention curve from pore size distribution", Geomech. Eng., 20(5), 411-420. https://doi.org/10.12989/gae.2020.20.5.411
- Parviz, N., Shen, ZS., Yunus, M. and Zulqarnain, S. (2020), "Loess deposits in southern Tajikistan (Central Asia): Magnetic properties and paleoclimate", Quarter. Geochronology., 60(101114), 1-12. https://doi.org/10.1016/j.quageo.2020.101114.
- Penumadu. D. and Dean. J. (2000), "Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry", Can. Geotech. J., 37(2), 393-405. https://doi.org/10.1139/t99-121.
- Rogers, C.D.F., Dijkstra, T.A. and Smalley, l.J. (1994), "Particle packing from an earth-science viewpoint", Earth Sci. Rev., 36(1-2), 59-82. https://doi.org/10.1016/0013-7952(94)90001-9.
- Romero, E., Della Vecchia, G. and Jommi, C. (2011), "An insight into the water retention properties of compacted clayey soils", Geotechnique, 61(4), 313-328. https://doi.org/10.1007/s11709-011-0108-8.
- Wang, J.D., Li, P., Ma, Y. and Vanapalli, S.K. (2019), "Evolution of pore-size distribution of intact loess and remolded loess due to consolidation", J. Soils. Sediments, 19(3), 1226-1238. https://doi.org/10.1007/s11368-018-2136-7.
- Wen, B.P. and Yan, Y.J. (2014), "Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China", Eng. Geol., 168, 46-58. https://doi.org/10.1016/j.enggeo.2013.10.023.
- Yates, K., Fenton, C.H. and Bell, D.H. (2018), "A review of the geotechnical characteristics of loess and loess-derived soils from Canterbury, South Island, New Zealand", Eng. Geol., 236, 11-21. https://doi.org/10.1016/j.enggeo.2017.08.001.
- Zhang, F., Ye, W.M., Chen, Y.G., Chen, B. and Cui, Y.J. (2016), "Influences of salt solution concentration and vertical stress during saturation on the volume change behavior of compacted GMZ01 bentonite", Eng. Geol., 207, 48-55. https://doi.org/10.1016/j.enggeo.2016.04.010.