DOI QR코드

DOI QR Code

Fuzzy-based multiple decision method for landslide susceptibility and hazard assessment: A case study of Tabriz, Iran

  • Nanehkaran, Yaser A. (School of Information Engineering, Jiangxi University of Science and Technology) ;
  • Mao, Yimin (School of Information Engineering, Jiangxi University of Science and Technology) ;
  • Azarafza, Mohammad (Department of Civil Engineering, Hacettepe University) ;
  • Kockar, Mustafa K. (Department of Civil Engineering, Hacettepe University) ;
  • Zhu, Hong-Hu (School of Earth Sciences and Engineering, Nanjing University)
  • 투고 : 2021.01.15
  • 심사 : 2021.02.12
  • 발행 : 2021.03.10

초록

Due to the complexity of the causes of the sliding mass instabilities, landslide susceptibility and hazard evaluation are difficult, but they can be more carefully considered and regionally evaluated by using new programming technologies to minimize the hazard. This study aims to evaluate the landslide hazard zonation in the Tabriz region, Iran. A fuzzy logic-based multi-criteria decision-making method was proposed for susceptibility analysis and preparing the hazard zonation maps implemented in MATLAB programming language and Geographic Information System (GIS) environment. In this study, five main factors have been identified as triggering including climate (i.e., precipitation, temperature), geomorphology (i.e., slope gradient, slope aspect, land cover), tectonic and seismic parameters (i.e., tectonic lineament congestion, distribution of earthquakes, the unsafe radius of main faults, seismicity), geological and hydrological conditions (i.e., drainage patterns, hydraulic gradient, groundwater table depth, weathered geo-materials), and human activities (i.e., distance to roads, distance to the municipal areas) in the study area. The results of analyses are presented as a landslide hazard map which is classified into 5 different sensitive categories (i.e., insignificant to very high potential). Then, landslide susceptibility maps were prepared for the Tabriz region, which is categorized in a high-sensitive area located in the northern parts of the area. Based on these maps, the Bozgoosh-Sahand mountainous belt, Misho-Miro Mountains and western highlands of Jolfa have been delineated as risk-able zones.

키워드

참고문헌

  1. Abay, A., Barbieri, G. and Woldearegay, K. (2019), "GIS-based landslide susceptibility evaluation using Analytical Hierarchy Process (AHP) approach: The case of Tarmaber District, Ethiopia", Momona Ethiopian J. Sci., 11(1), 14-36. https://doi.org/10.4314/mejs.v11i1.2.
  2. Aghanabati, A. (2007), Geology of Iran, Geological Survey of Iran press, Tehran, Iran (in Persian).
  3. Azarafza, M. and Ghazifard, A. (2016), "Urban geology of Tabriz City: Environmental and geological constraints", Adv. Environ. Res., 5(2), 95-108. http://doi.org/10.12989/aer.2016.5.2.095.
  4. Azarafza, M. and Mokhtari, M.H. (2013), "Evaluation of drought effect on Urmia Lake salinity changes using remote sensing techniques", Arid Biom Sci. Res. J., 3(2), 1-14 (in Persian).
  5. Azarafza, M., Asghari-Kaljahi, E. and Akgun, H. (2017a), "Assessment of discontinuous rock slope stability with block theory and numerical modeling: A case study for the South Pars Gas Complex, Assalouyeh, Iran", Environ. Earth Sci., 76(11), 397. https://doi.org/10.1007/s12665-017-6711-9.
  6. Azarafza, M., Asghari-Kaljahi, E. and Akgun, H. (2017b), "Numerical modeling of discontinuous rock slopes utilizing the 3DDGM (three-dimensional discontinuity geometrical modeling) method", B. Eng. Geol. Environ., 76(3), 989-1007. https://doi.org/10.1007/s10064-016-0879-1.
  7. Azarafza, M., Ghazifard, A., Akgun, H. and Asghari-Kaljahi, E. (2018), "Landslide susceptibility assessment of South Pars Special Zone, southwest Iran", Environ. Earth Sci., 77, 805. https://doi.org/10.1007/s12665-018-7978-1.
  8. Bagheri Shendi, M. and Azarafza, M. (2018), "A case study for utilization of image processing in jointed network detection in open-pit mining", Geotech. Geol., 14(2), 197-202.
  9. Bell, F.G. (2007), Engineering Geology, Butterworth-Heinemann, Oxford, U.K.
  10. Calcaterra, D. and Parise, M. (2010), Weathering as a Predisposing Factor to Slope Movements, Geological Society of London Press, London, U.K.
  11. Castellanos Abella, E.A. and Van Westen, C.J. (2008), "Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantanamo, Cuba", Geomorphology, 94(3-4), 453-466. https://doi.org/10.1016/j.geo morph.2006.10.038.
  12. Chen, T., Kuo, C.F. and Chen, J.C.Y. (2019), "Computer vision monitoring and detection for landslides", Struct. Monit. Maint., 6(2), 161-171. http://doi.org/10.12989/smm.2019.6.2.161.
  13. Chen, W., Li, W., Chai, H., Hou, E., Li, X. and Ding, X. (2016), "GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China", Environ. Earth Sci., 75(1), 63. https://doi.org/10.1007/s12665-015-4795-7.
  14. Chen, W., Pourghasemi, H.R. and Zhao, Z. (2017), "A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping", Geocarto. Int., 32(4), 367-385. https://doi.org/10.1080/10106049.2016.1140824.
  15. Chen, X.P., Zhu, H.H., Huang, J.W. and Liu, D. (2016), "Stability analysis of an ancient landslide considering shear strength reduction behavior of slip zone soil", Landslides, 13(1), 173-181. https://doi.org/10.1007/s10346-015-0629-7.
  16. Choi, J., Oh, H.J., Lee, H.J., Lee, C. and Lee, S. (2012), "Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS", Eng. Geol., 124, 12-23. https://doi.org/10.1016/j.enggeo.2011.09.011.
  17. Du, J., Glade, T., Woldai, T., Chai, B. and Zeng, B. (2020), "Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas", Eng. Geol., 270, 105572. https://doi.org/10.1016/j. enggeo.2020.105572.
  18. Ercanoglu, M. and Gokceoglu, C. (2004), "Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey)", Eng. Geol., 75(3-4), 229-250. https://doi.org/10.1016/j.enggeo.2004.06.001.
  19. Ercanoglu, M., Kasmer, O. and Temiz, N. (2008), "Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping", B. Eng. Geol. Environ., 67(4), 565-578. https://doi.org/10.1007/s10064-008-0170-1.
  20. ESRI (2017), ArcGIS Software Version 10.4, International Supplier of Geographic Information System Software, web GIS and geodatabase management applications, https://www.esri.com.
  21. Geological Survey of Iran (2009), Geological Map of Tabriz Region-Scale: 1:250.000 and 1:100.000. Geological Survey of Iran Press, Tehran, Iran (in Persian).
  22. Hasekiogullari, G. and Ercanoglu, M. (2012), "A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey)", Nat. Hazards, 63(2), 1157-1179. https://doi.org/10.1007/s11069-012-0218-1.
  23. Highland, L.M. and Bobrowsky, P. (2008), The Landslide Handbook-A Guide to Understanding Landslides, US Geological Survey Circular, Reston, Virginia, U.S.A.
  24. Iran Meteorological Organization (2019), Climatological data from Tabriz station, The Iran Meteorological Organization, http://www.irimo.ir/.
  25. Kanungo, D.P., Arora, M.K., Sarkar, S. and Gupta, R.P. (2006), "A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas", Eng. Geol., 85(3-4), 347-366. https://doi.org/10.1016/j.enggeo.2006.03.004.
  26. Kayastha, P., Dhital, M.R. and De Smedt, F. (2013), "Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal", Comput. Geosci., 52, 398-408. https://doi.org/10.1 016/j.cageo.2012.11.003. https://doi.org/10.1016/j.cageo.2012.11.003
  27. Khezri, S. (2011), "Landslide susceptibility in the Zab Basin, northwest of Iran", Procedia - Soc Behav Sci., 19, 726-731. https://doi.org/10.1016/j.sbspro.2011.05.191.
  28. Kim, Y. and Jeong, S. (2017), "Modeling of shallow landslides in an unsaturated soil slope using a coupled model", Geomech. Eng., 13(2), 353-370. http://doi.org/10.12989/gae.2017.13.2.353.
  29. Komac, K. (2006), "A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia", Geomorphology, 74(1-4), 17-28. https://doi. org/10.1016/j.geomorph.2005.07.005.
  30. Liu, D. and Chen, X. (2015), "Shearing characteristics of slip zone soils and strain localization analysis of a landslide", Geomech. Eng., 8(1), 33-52. http://doi.org/10.12989/gae.2015.8.1.033.
  31. Lorentz, J.F., Calijuri, M.L., Marques, E.G. and Baptista, A.C. (2016), "Multicriteria analysis applied to landslide susceptibility mapping", Nat. Hazards, 83(1), 41-52. https://doi.org/10.1007/s11069-016-2300-6.
  32. Mamdani, E.H. (1977), "Application of fuzzy logic to approximate reasoning using linguistic synthesis", IEEE T. Comput. Arch. Lett., 26(12), 1182-1191. https://doi.org/10.1109/TC.1977.1674779.
  33. Mamdani, E.H. and Assilian, S. (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", Int. J. ManMach. Stud., 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2.
  34. MathWorks (2014), MATLAB, version R2014b, The MathWorks Inc, Natick, Massachusetts, U.S.A.
  35. Mokarram, M. and Zarei, A.R. (2018), "Landslide susceptibility mapping using Fuzzy-AHP", Geotech. Geol. Eng., 36(6), 3931-3943. https://doi.org/10.1007/s10706-018-0583-y.
  36. Neuhauser, B., Damm, B. and Terhorst, B. (2012), "GIS-based assessment of landslide susceptibility on the base of the weights-of-evidence model", Landslides, 9(4), 511-528. https:// doi.org/10.1007/s10346-011-0305-5.
  37. Nogol-Sadat, M.A. and Almasian, A. (1993), Tectonic Map of Iran 1:1,000,000 Treatise on the Geology of Iran, Geological Survey of Iran, Tehran, Iran (in Persian).
  38. Pourghasemi, H.R., Pradhan, B. and Gokceoglu, C. (2012), "Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran", Nat. Hazards, 63, 965-996. https://doi.org/10.1007 /s11069-012-0217-2. https://doi.org/10.1007/s11069-012-0217-2
  39. Rhim, H.C. (2011), "Measurements of dielectric constants of soil to develop a landslide prediction system", Smart Struct. Syst., 7(4), 319-428. http://doi.org/10.12989/sss.2011.7.4.319.
  40. Roodposhti, M.S., Rahimi, S. and Beglou, M.J. (2013), "PROMETHEE II and fuzzy AHP: An enhanced GIS-based landslide susceptibility mapping", Nat. Hazards, 73(1), 77-95. https://doi.org/10.1007/s11069-012-0523-8.
  41. Sivanandam, S.N., Sumathi, S. and Deepa, S.N. (2007), Introduction to Fuzzy Logic using MATLAB, Springer, Berlin/Heidelberg, Germany.
  42. Vakhshoori, V. and Zare, M. (2016), "Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods", Geomatics, Nat. Hazard Risk, 7(5), 1731-1752. https://doi.org/10.1080/19475705.2016.1144655.
  43. Yager, R.R. and Zadeh, L.A. (1992), An Introduction to Fuzzy Logic Applications in Intelligent Systems, Springer Science and Business Media, Berlin/Heidelberg, Germany.
  44. Yalcin, A. (2008), "GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations", Catena, 72, 1-12. https://doi.org/10.1016/j.catena.2007.01.003.
  45. Yilmaz, I. (2010), "Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine", Environ. Earth Sci., 61(4), 821-836. https://doi.org/10.1007/s12665-009-0394-9.
  46. Yin, Y. (2011), "Recent catastrophic landslides and mitigation in China", J. Rock Mech. Geotech. Eng., 3, 10-18. https://doi.org/10.3724/SP.J.1235.2011.00010.
  47. Yoshimatsu, H. and Abe, S. (2006), "A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method", Landslides, 3(2), 149-158. https://doi.org/10.1007/s10346-005-0031-y.
  48. Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control., 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  49. Zhao, H., Yao, L., Mei, G., Liu, T. and Ning, Y. (2017), "A fuzzy comprehensive evaluation method based on AHP and entropy for a landslide susceptibility map", Entropy, 19(8), 396. https://doi.org/10.3390/e19080396.
  50. Zheng, L., Chen, G., Zen, G. and Kasama, K. (2012), "Numerical validation of Multiplex Acceleration Model for earthquake induced landslides", Geomech. Eng., 4(1), 39-53. http://doi. org/10.12989/gae.2012.4.1.039.
  51. Zhu, H.H., Wang, Z.Y., Shi, B. and Wong, J.K.W. (2016), "Feasibility study of strain based stability evaluation of locally loaded slopes: Insights from physical and numerical modeling", Eng. Geol., 208, 39-50. https://doi.org/10.1016/j.enggeo.201 6.04.019.

피인용 문헌

  1. Displacement prediction of step-like landslides based on feature optimization and VMD-Bi-LSTM: a case study of the Bazimen and Baishuihe landslides in the Three Gorges, China vol.80, pp.11, 2021, https://doi.org/10.1007/s10064-021-02454-5