DOI QR코드

DOI QR Code

Hydrologically Route-based Green Infra facilities assessment Model: Focus on Bio-retention cells, Infiltration trenches, Porous Pavement System, and Vegetative Swales

수문학적 추적 기반의 GI 시설 평가 모델: 생태저류지, 침투도랑, 투수성포장, 식생수로를 대상으로

  • Won, Jeongeun (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Seo, Jiyu (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Choi, Jeonghyeon (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Kim, Sangdan (Department of Environmental Engineering, Pukyong National University)
  • 원정은 (부경대학교 지구환경시스템과학부 (환경공학전공)) ;
  • 서지유 (부경대학교 지구환경시스템과학부 (환경공학전공)) ;
  • 최정현 (부경대학교 지구환경시스템과학부 (환경공학전공)) ;
  • 김상단 (부경대학교 환경공학과)
  • Received : 2021.02.04
  • Accepted : 2021.02.23
  • Published : 2021.02.28

Abstract

Active stormwater management is essential to minimize the impact of urban development and improve the hydrological cycle system. In recent years, the Low Impact Development (LID) technique for urban stormwater management is attracting attention as a reasonable alternative. The Storm Water Management Model (SWMM) is actively used in urban hydrological cycle improvement projects as it provides simulation functions for various GI (Green Infra) facilities through its LID module. However, in order to simulate GI facilities using SWMM, there are many difficulties in setting up complex watersheds and deploying GI facilities. In this study, a model that can evaluate the performance of GI facilities is proposed while implementing the core hydrological process of GI facilities. Since the proposed model operates based on hydrological routing, it can not only reflect the infiltration, storage, and evapotranspiration of GI facilities, but also quantitatively evaluate the effect of improving urban hydrological cycle by GI facilities. The applicability of the proposed model was verified by comparing the results of the proposed model with the results of SWMM. In addition, a discussion of errors occurring in the SWMM's permeable pavement system simulation is included.

도시 개발로 인한 영향을 최소화하여 물 순환 체계를 개선하기 위해서는 적극적인 강우유출수 관리가 필수적이다. 최근에는 도시의 강우유출수 관리를 위한 저영향개발(Low Impact Development, LID) 기법이 합리적인 대안으로 주목받고 있다. Storm Water Management Model(SWMM)은 LID 모듈을 통해 다양한 GI(Green Infra) 시설에 대한 모의 기능을 제공하고 있어 도시 물순환 개선 사업에 적극 활용되고 있다. 그러나 SWMM을 이용하여 GI 시설을 모의하기 위해서는 복잡한 유역 설정과 GI 시설 배치에 많은 어려움이 존재한다. 본 연구에서는 GI 시설의 핵심적인 수문 프로세스를 구현하면서도 상대적으로 간단하게 GI 시설의 성능을 평가할 수 있는 모형이 제안된다. 제안된 모형은 수문학적 추적을 기반으로 작동되므로 GI 시설의 침투, 저류, 증발산을 모두 반영할 수 있을 뿐만 아니라 GI 시설에 의한 도시 물순환 개선 효과를 정량적으로 평가할 수 있다. 제안된 모형의 결과와 SWMM의 결과를 비교함으로써 제안된 모형의 적용성을 검증하였다. 더붙여서 SWMM의 투수성 포장 모의에서 발생되는 오류에 대한 논의가 포함된다.

Keywords

References

  1. Baek, S. S., Choi, D. H., Jung, J. W., Lee, H. J., Lee, H., Yoon, K. S., and Cho, K. H. (2015). Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Research, 86, 122-131. [DOI : https://doi.org/10.1016/j.watres.2015.08.038]
  2. Baek, S. S., Ligaray, M., Park, J. P., Shin, H. S., Kwon, Y., Brascher, J. T., & Cho, K. H. (2019). Developing a hydrological simulation tool to design bioretention in a watershed. Environmental Modelling & Software, 122, 104074. [DOI : https://doi.org/10.1016/j.envsoft.2017.11.006]
  3. Burszta-Adamiak, E., and Mrowiec, M. (2013). Modelling of green roofs' hydrologic performance using EPA's SWMM. Water Science and Technology, 68(1), 36-42. [DOI : https://doi.org/10.2166/wst.2013.219]
  4. Choe, B., Lee, O., Park, Y., Im, T., and Kim, S. (2016). Quantifying uncertainty in Korean non-point sources pollution control facilities design practice. Journal of the Korean Society of Hazard Mitigation, 16(5), 359-367. [Korean Literature] [DOI : https://doi.org/10.9798/KOSHAM.2016.16.5.359]
  5. Choi, D., Park, M. J., Park, B. K., and Kim, S. (2014). The improvement on the empirical formula of stormwater captured ratio for water quality volume based non-point pollutants water quality control basins. Journal of Korean Society on Water Environment, 30(1), 87-94. [Korean Literature] [DOI : https://doi.org/10.15681/KSWE.2014.30.1.087]
  6. Choi, J., and Kim, S. (2020). Estimation of load capture ratio for evaluating LID facilities performance in Korea. Water Supply, 20(8), 3464-3477. [DOI : https://doi.org/10.2166/ws.2020.243]
  7. Choi, J., Lee, O., and Kim, S. (2017). Estimation of stormwater interception rate for bio-retention LID facility. Journal of Korean Society on Water Environment, 33(5), 563-571. [Korean Literature] [DOI : https://doi.org/10.15681/KSWE.2017.33.5.563]
  8. Choi, J., Lee, O., Kim, Y., and Kim, S. (2018). Improvement of Estimation Method of Load Capture Ratio for Design and Evaluation of Bio-retention LID Facility. Journal of Korean Society on Water Environment, 34(6), 569-578. [Korean Literature] [DOI : https://doi.org/10.15681/KSWE.2018.34.6.569]
  9. Choi, J., Lee, O., Lee, J., and Kim, S. (2019). Estimation of stormwater interception ratio for evaluating LID facilities performance in Korea. Membrane Water Treatment, 10(1), 19-28. [DOI : https://doi.org/10.12989/mwt.2019.10.1.019]
  10. Jeon, J. H., Choi, D. H., and Kim, T. D. (2009). LIDMOD development for evaluating low impact development and its applicability to total maximum daily loads. Journal of Korean Society on Water Environment, 25(1), 58-68. [Korean Literature]
  11. Jeon, J. H., Choi, D., Na, E. H., Park, C. G., & Kim, T. D. (2010). LIDMOD2 Development for Evaluation of LID/BMPs. Journal of Korean Society on Water Environment, 26(3), 432-438. [Korean Literature]
  12. Jia, H., Yao, H., and Shaw, L. Y. (2013). Advances in LID BMPs research and practice for urban runoff control in China. Frontiers of Environmental Science & Engineering, 7(5), 709-720. [DOI : https://doi.org/10.1007/s11783-013-0557-5]
  13. Kim, K., Choi, J., Kim, S., Kang, L. S., Shin, H., and Kim, S. (2019). Analysis of the Effect of Bio-Retention Cells to Improve Water Cycle and Water Quality in Urban Streams. Journal of Wetlands Research, 21(3), 224-235. [Korean Literature] [DOI : https://doi.org/10.17663/JWR.2019.21.3.224]
  14. Krebs, G., Kokkonen, T., Valtanen, M., Koivusalo, H., and Setala, H. (2013). A high resolution application of a stormwater management model (SWMM) using genetic parameter optimization. Urban Water Journal, 10(6), 394-410. [DOI : https://doi.org/10.1080/1573062X.2012.739631]
  15. Luan, Q., Fu, X., Song, C., Wang, H., Liu, J., and Wang, Y. (2017). Runoff effect evaluation of LID through SWMM in typical mountainous, low-lying urban areas: A case study in China. Water, 9(6), 439. [DOI : https://doi.org/10.3390/w9060439]
  16. Miller, J. D., Kim, H., Kjeldsen, T. R., Packman, J., Grebby, S., and Dearden, R. (2014). Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. Journal of Hydrology, 515, 59-70. [DOI : https://doi.org/10.1016/j.jhydrol.2014.04.011]
  17. National Institute of Environmental Research (NIER). (2014). The Total Amount of Water Pollution Management Technical Guidance, National Institute of Environmental Research, pp. 67-68.
  18. Panos, C. L., Wolfand, J. M., and Hogue, T. S. (2020). SWMM Sensitivity to LID Siting and Routing Parameters: Implications for Stormwater Regulatory Compliance. JAWRA Journal of the American Water Resources Association, 56(5), 790-809. [DOI : https://doi.org/10.1111/1752-1688.12867]
  19. Park, J., Yoo, Y., Park, Y., Yoon, H., KIm, J., Park, Y., Jeon, J., and Lim, K. J. (2008). Analysis of Runoff Reduction with LID Adoption using the SWMM. Journal of Korean Society on Water Environment, 24(6), 806-816. [Korean Literature]
  20. Rosa, D. J., Clausen, J. C., and Dietz, M. E. (2015). Calibration and verification of SWMM for low impact development. JAWRA Journal of the American Water Resources Association, 51(3), 746-757. [DOI : https://doi.org/10.1111/jawr.12272]
  21. Sarma, A. K., Singh, V. P., Kartha, S. A., and Bhattacharjya, R. K. (Eds.). (2016). Urban hydrology, watershed management and socio-economic aspects. Springer International Publishing.
  22. Shin, H. S., Park, J. B., & Lee, J. H. (2016). Development of a Verification and Certification Method of Green Infrastructure and Low Impact Development Technologies. Ecology and Resilient Infrastructure, 3(2), 92-99. [Korean Literature] [DOI : https://doi.org/10.17820/eri.2016.3.2.092]
  23. Sun, Y. W., Li, Q. Y., Liu, L., Xu, C. D., and Liu, Z. P. (2014). Hydrological simulation approaches for BMPs and LID practices in highly urbanized area and development of hydrological performance indicator system. Water Science and Engineering, 7(2), 143-154. [DOI : https://doi.org/10.3882/j.issn.1674-2370.2014.02.003]
  24. Walega, A., Radecki-Pawlik, A., Cupak, A., Hathaway, J., and Pukowiec, M. (2019). Influence of changes of catchment permeability and frequency of rainfall on critical storm duration in an urbanized catchment-A case study, Cracow, Poland. Water, 11(12), 2557. [DOI : https://doi.org/10.3390/w11122557]
  25. Wang, J., Zhou, L., Han, P., and Li, G. (2020). The Impact of Urbanization and LID Technology on Hydrological Effect. Journal of Coastal Research, 104(SI), 14-22. [DOI : https://doi.org/10.2112/JCR-SI104-004.1]
  26. Wang, M., Zhang, D. Q., Su, J., Trzcinski, A. P., Dong, J. W., and Tan, S. K. (2017). Future scenarios modeling of urban stormwater management response to impacts of climate change and urbanization. CLEAN-Soil, Air, Water, 45(10), 1700111. [DOI : https://doi.org/10.1002/clen.201700111]
  27. Xie, J., Wu, C., Li, H., and Chen, G. (2017). Study on storm-water management of grassed swales and permeable pavement based on SWMM. Water, 9(11), 840. [DOI : https://doi.org/10.3390/w9110840]
  28. Xu, Z., and Zhao, G. (2016). Impact of urbanization on rainfall-runoff processes: case study in the Liangshui River Basin in Beijing, China. Proceedings of the International Association of Hydrological Sciences, 373, 7-12. [DOI : https://doi.org/10.5194/piahs-373-7-2016]