DOI QR코드

DOI QR Code

Distance Eccentric Connectivity Index of Graphs

  • Alqesmah, Akram (Department of Studies in Mathematics, University of Mysore) ;
  • Saleh, Anwar (Department of Mathematics, Faculty of Science, University of Jeddah) ;
  • Rangarajan, R. (Department of Studies in Mathematics, University of Mysore) ;
  • Gunes, Aysun Yurttas (Bursa Uludag University) ;
  • Cangul, Ismail Naci (Bursa Uludag University)
  • 투고 : 2019.07.06
  • 심사 : 2020.05.18
  • 발행 : 2021.03.31

초록

Let G = (V, E) be a connected graph. The eccentric connectivity index of G is defined by ��C (G) = ∑u∈V (G) deg(u)e(u), where deg(u) and e(u) denote the degree and eccentricity of the vertex u in G, respectively. In this paper, we introduce a new formulation of ��C that will be called the distance eccentric connectivity index of G and defined by $${\xi}^{De}(G)\;=\;{\sum\limits_{u{\in}V(G)}}\;deg^{De}(u)e(u)$$ where degDe(u) denotes the distance eccentricity degree of the vertex u in G. The aim of this paper is to introduce and study this new topological index. The values of the eccentric connectivity index is calculated for some fundamental graph classes and also for some graph operations. Some inequalities giving upper and lower bounds for this index are obtained.

키워드

참고문헌

  1. N. Akgunes, K. C. Das, A. S. Cevik and I. N. Cangul, Some properties on the lexicographic product of graphs obtained by monogenic semigroups, J. Inequal. Appl., (2013), 2013:238, 9 pp.
  2. A. Alqesmah, A. Alwardi and R. Rangarajan, On the distance eccentricity Zagreb indices of graphs, International J. Math. Combin., 4(2017), 110-120.
  3. A. R. Ashrafi, T. Doslic and M. Saheli, The eccentric connectivity index of T UC4C8(R) nanotubes, MATCH Commun. Math. Comput. Chem., 65(1)(2011), 221-230.
  4. A. R. Ashrafi, M. Saheli and M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math., 235(16)(2011), 4561-4566. https://doi.org/10.1016/j.cam.2010.03.001
  5. A. T. Balaban, Highly discriminating distance-based topological index, Chem. Phys. Lett., 89(5)(1982), 399-404. https://doi.org/10.1016/0009-2614(82)80009-2
  6. A. T. Balaban, Topological indices based on topological distances in molecular graph, Pure Appl. Chem., 55(2)(1983), 199-206. https://doi.org/10.1351/pac198855020199
  7. K. C. Das, N. Akgunes, M. Togan, A. Yurttas, I. N. Cangul and A. S. Cevik, On the first Zagreb index and multiplicative Zagreb coindices of graphs, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 24(1)(2016), 153-176.
  8. K. C. Das, K. Xu, I. N. Cangul, A. S. Cevik and A. Graovac, On the Harary index of graph operations, J. Inequal. Appl., (2013), 2013:339, 16 pp.
  9. K. C. Das, A. Yurttas, M. Togan, A. S. Cevik and I. N. Cangul, The multiplicative Zagreb indices of graph operations, J. Inequal. Appl., (2013), 2013:90, 14 pp.
  10. T. Doslic, M. Saheli and D. Vukieevic, Eccentric connectivity index: extremal graphs and values, Iran. J. Math. Chem., 1(2)(2010), 45-56.
  11. S. Gupta, M. Singh and A. K. Madan, Connective eccentricity index: a novel topological descriptor for predicting biological activity, J. Mol. Graph. Model., 18(1)(2000), 18-25. https://doi.org/10.1016/S1093-3263(00)00027-9
  12. S. Gupta, M. Singh and A. K. Madan, Application of graph theory: relationship of eccentric connectivity index and Wiener's index with anti-inflammatory activity, J. Math. Anal. Appl., 266(2)(2002), 259-268. https://doi.org/10.1006/jmaa.2000.7243
  13. F. Harary, Graph theory, Addison-Wesley, Reading Mass, 1969.
  14. H. Hua and K. C. Das, The relationship between eccentric connectivity index and Zagreb indices, Discrete Appl. Math., 161(2013), 2480-2491. https://doi.org/10.1016/j.dam.2013.05.034
  15. A. Ilic and I. Gutman, Eccentric connectivity index of chemical trees, MATCH Commun. Math. Comput. Chem., 65(2011), 731-744.
  16. E. G. Karpuz, K. C. Das, I. N. Cangul and A. S. Cevik, A new graph based on the semi-direct product of some monoids, J. Inequal. Appl., (2013), 2013:118, 8 pp.
  17. M. J. Morgan, S. Mukwembi and H. C. Swart, On the eccentric connectivity index of a graph, Discrete Math., 311(2011), 1229-1234. https://doi.org/10.1016/j.disc.2009.12.013
  18. M. J. Morgan, S. Mukwembi and H. C. Swart, A lower bound on the eccentric connectivity index of a graph, Discrete Appl. Math., 160(2012), 248-258. https://doi.org/10.1016/j.dam.2011.09.010
  19. M. Saheli and A. R. Ashrafi, The eccentric connectivity index of armchair polyhex nanotubes, Maced. J. Chem. Chem. Eng., 29(1)(2010), 71-75. https://doi.org/10.20450/mjcce.2010.175
  20. A. P. Santhakumaran and P. Titus, The edge fixed geodomination number of a graph, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 17(1)(2009), 187-200.
  21. S. Sardana and A. K. Madan, Application of graph theory: relationship of antimycobacterial activity of quinolone derivatives with eccentric connectivity index and Zagreb group parameters, MATCH Commun. Math. Comput. Chem., 45(2002), 35-53.
  22. V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: a Novel highly discriminating topological descriptor for structure-property and structureactivity studies, J. Chem. Inf. Comput. Sci., 37(2)(1997), 273-282. https://doi.org/10.1021/ci960049h
  23. R. Xing, B. Zhou and N. Trinajstic, On Zagreb eccentricity indices, Croat. Chem. Acta, 84(4)(2011), 493-497.
  24. B. Zhou and Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput. Chem., 63(2010), 181-198.