References
- O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, "A survey of automatic modulation classification techniques: classical approaches and new trends," IET Communications, vol. 1, pp. 137-156, Apr. 2007. https://doi.org/10.1049/iet-com:20050176
- S. H. Seo, Y. J. Yoon, Y. H. Jin, Y. J. Seo, S. M. Lim, J. M. Ahn, C. S. Eun, W. Jang, and S. P. Nah, "Automatic Recognition of Analog and Digital Modulation Signals," The Journal of Korean Institute of Communications and Information Sciences, vol. 30, no. 1C, pp. 73-81, Jan. 2005.
- J. K. Kim, B. D. Kim, D. W. Yoon, and J. W. Choi, "Deep Neural Network-based Automatic Modulation Classification Technique," The Journal of Korean Institute of Information Technology, vol. 14, no. 12, pp. 107-115, Dec. 2016.
- H. J. Kim, H. J. Kim, J. H. Je, and K. S. Kim, "A deep learning method for the automatic modulation recognition of received radio signals," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 10, pp. 1275-1281, Oct. 2019. https://doi.org/10.6109/JKIICE.2019.23.10.1275
- T. J. O'Shea, J. Corgan, and T. C. Clancy, "Convolutional Radio Modulation Recognition Networks," Preprint, submitted, Jun. 2016. https://arxiv.org/abs/1602.04105.
- N. E. West and T. J. O'Shea, "Deep architectures for modulation recognition," in IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1-6, 2017.
- T. J. O'Shea, T. Roy, and T. C. Clancy, "Over-the-Air Deep Learning Based Radio Signal Classification," IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-179, 2018. https://doi.org/10.1109/jstsp.2018.2797022
- I. S. Choi, S. J. Jang, and S. J. Yoo, "Feature-Based Automatic Modulation Classification Using Deep Learning in Cognitive Radio," The Journal of Korean Institute of Communications and Information Sciences, vol. 43, no. 6, pp. 930-944, Jun. 2018. https://doi.org/10.7840/kics.2018.43.6.930
- S. H. Kim, C. Y. Kim, S. H. Yoo, and D. S. Kim, "Design of Deep Learning Model for Automatic Modulation Classification in Cognitive Radio Network," The Journal of Korean Institute of Communications and Information Sciences, vol. 45, no. 8, pp. 1364-1372, Aug. 2020. https://doi.org/10.7840/kics.2020.45.8.1364
- M. Ettus and M. Braun, "The universal software radio peripheral (usrp) family of low-cost sdrs," Opportunistic Spectrum Sharing and White Space Access: The Practical Reality, pp. 3-23, 2015.
- T. J. O'Shea and N. West, "Radio machine learning dataset generation with GNU radio," in Proceedings of the GNU Radio Conference, vol. 1, no. 1, 2016.
- N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.
- J. J. Kang, S. K. Park, and J. H. Roh, "Performance Analysis on Digital Phase Difference Measurement Techniques for Interferometer Direction Finder," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 8, pp. 1076-1082, Aug. 2018. https://doi.org/10.6109/JKIICE.2018.22.8.1076
- A. Thompson, Deep Learning on RF Data [Internet]. Available: https://on-demand.gputechconf.com/gtc/2018/presentation/s8826-deep-learning-applications-for-radio-frequency-rf-data.pdf.