DOI QR코드

DOI QR Code

A Study on Growth of Graphene/metal Microwires and Their Electrical Properties

금속/그래핀 이중 구조 와이어의 합성 및 전기적 특성 연구

  • Jeong, Minhee (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Kim, Dongyeong (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Rho, Hokyun (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Shin, Han-Kyun (Department of Metallurgical Engineering, Dong-A University) ;
  • Lee, Hyo-Jong (Department of Metallurgical Engineering, Dong-A University) ;
  • Lee, Sang Hyun (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • 정민희 (전남대학교 화학공학부) ;
  • 김동영 (전남대학교 화학공학부) ;
  • 노호균 (전남대학교 화학공학부) ;
  • 신한균 (동아대학교 신소재공학과) ;
  • 이효종 (동아대학교 신소재공학과) ;
  • 이상현 (전남대학교 화학공학부)
  • Received : 2021.03.16
  • Accepted : 2021.03.30
  • Published : 2021.03.30

Abstract

In this study, graphene layer was grown on metal microwire using chemical vapor deposition. The difference of carbon solubility between copper and nickel resulted in the formation of mono-layer and multi-layer graphene were formed on the surfaces of copper and nickel microwires, respectively. During the growth of graphene at high temperature, copper and nickel were recrytallized and the grain size increased. The ampacity of graphene/copper microwire was improved by approximately 27%, 1.91×105 A/㎠, compared to pristine copper microwire. Similar to this behavior, the ampacity of multilayer graphene/nickel microwire was 4.41×104 A/㎠ which is about about 36% improved compared to the pure nickel microwire. The excellent electrical properties of graphene/metal composites are beneficial for supplying the electrical energy to the high-power electronic devices and equipment.

본 연구에서는 금속 와이어를 촉매로 화학기상증착법을 이용하여 그래핀을 합성하고 구조 및 전기적 특성 변화를 분석하였다. 구리와 니켈의 탄소에 대한 용해도 차이로 인해 구리와이어에서는 단층 그래핀이 성장하였고, 니켈와이어의 표면에는 다층 그래핀이 성장되었다. 또한. 고온의 그래핀 성장 조건에서 구리와 니켈의 재결정화를 통해 결정립의 크기가 증가한 것을 확인하였다. 표면에 그래핀이 합성된 구리와이어의 경우, 최대전류허용치는 1.91×105 A/㎠으로 합성 전 구리와이어에 비해 약 27% 향상되었다. 이와 유사하게, 다층 그래핀이 합성된 니켈와이어의 경우에도 최대전류 허용치는 순수한 니켈와이어 대비 약 36% 향상된 4.41×104 A/㎠으로 측정되었다. 이러한 그래핀/금속 복합소재의 우수한 전기적 특성은 고전류를 요구하는 소자 및 부품에서 안정적인 전기적 흐름을 공급하는데 기여할 수 있을 것이다.

Keywords

References

  1. P. S. Ho and T. Kwok, "Electromigration in metals", Rep. Prog. Phys., 52, 301 (1989). https://doi.org/10.1088/0034-4885/52/3/002
  2. W. Steinhogl, G. Schindler, G. Steinlesberger and M. Engelhardt, "Size-dependent resistivity of metallic wires in the mesoscopic range", Phys. Pev. B 66, 075414 (2002).
  3. Z. Yao, C. L. Kane and C. Dekker, "High-field electrical transport in single-wall carbon nanotubes", Phys. Rev. Lett. 84, 2941 (2000). https://doi.org/10.1103/PhysRevLett.84.2941
  4. R. Murali, Y. Yang, K. Brenner, T. Beck and J. D. Meindl, "Breakdown current density of graphene nanoribbons", Appl. Phys. Lett. 94, 2431143 (2009).
  5. Z. Yao, C. L. Kane and C. Dekker, "High-field electrical transport in single-wall carbon nanotubes", Phys. Rev. Lett. 84, 2941 (2000). https://doi.org/10.1103/PhysRevLett.84.2941
  6. C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D. N. Futaba, M. Yumura and K. Hata, "One hundred folds increase in current carrying capacity in a carbon nanotube-copper composite", Nat. Comm. 4, 2022 (2013). https://doi.org/10.1038/ncomms3022
  7. H. Rho, M. Park, M. Park, J. Park, J. Han, A. Lee, S. Bae, T.-W. Kim, J.-S. Ha, S. M. Kim, D. S. Lee, and S. H. Lee, "Metal nanofibrils embedded in long free-standing carbon nanotube fibers with a high critical current density", NPG Asia Mater. 10, 146 (2018). https://doi.org/10.1038/s41427-018-0028-3
  8. S. J. Kim, D. H. Shin, Y. S. Choi, H. Rho, M. Park, B. J. Moon, Y. Kim, S.-K. Lee, D. S. Lee, T.-W. Kim, S. H. Lee, K. S. Kim, B. H. Hong and S. Bae "Ultrastrong Graphene-Copper Core-Shell Wires for High-Performance Electrical Cables", ACS Nano 12, 2803 (2018). https://doi.org/10.1021/acsnano.8b00043
  9. T. W. Lee and H.-H. Park "The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode", J. Microelectron. Packag. Soc., 21, 77 (2014). https://doi.org/10.6117/kmeps.2014.21.4.077
  10. S. W. Bang, H. Rho, H. Bae, S.-J. Kang and J.-S. Ha, "Improvement of Electrochemical Reduction Characteristics of Carbon Dioxide at Porous Copper Electrode using Graphene", J. Microelectron. Packag. Soc., 25, 105 (2018) https://doi.org/10.6117/KMEPS.2018.25.4.105
  11. R. Mehta, S. Chugh, and Z. Chen, "Enhanced Electrical and Thermal Conduction in Graphene-Encapsulated Copper Nanowires", Nano Lett. 15, 2024 (2015). https://doi.org/10.1021/nl504889t
  12. I. Calizo, I. Bejenari, M. Rahman, G. Liu and A. A. Balandin, Ultraviolet Raman microscopy of single and multilayer graphene", J. Appl. Phys. 106, 043509 (2009). https://doi.org/10.1063/1.3197065
  13. S. Kasap and P. Capper, "Springer Handbook of Electronic and Photonic Materials", Springer International Publishing (2017).
  14. J. Cho and C. V. Thompson, Grain size dependence of electromigration-induced failures in narrow interconnects", Appl. Phys. Lett. 54, 2577 (1989). https://doi.org/10.1063/1.101054