DOI QR코드

DOI QR Code

Preliminary Conceptual Design of a Multicopter Type eVTOL using Reverse Engineering Techniques for Urban Air Mobility

도심항공 모빌리티(UAM)를 위한 역설계 기법을 사용한 멀티콥터형 eVTOL의 기본 개념설계

  • Choi, Won-Seok (Department of Aerospace Engineering, Sejong University) ;
  • Yi, Dong-Kyu (Department of Aerospace Engineering, Sejong University) ;
  • Hwang, Ho-Yon (Department of Aerospace Engineering, and Department of Convergence Engineering for Intelligent Drone, Sejong University)
  • 최원석 (세종대학교 항공우주공학과) ;
  • 이동규 (세종대학교 항공우주공학과) ;
  • 황호연 (세종대학교 항공우주공학과, 지능형드론 융합전공학과)
  • Received : 2021.01.19
  • Accepted : 2021.02.24
  • Published : 2021.02.28

Abstract

As a means of solving traffic congestion in the downtown of large city, the interest in urban air mobility (UAM) using electric vertical take-off landing personal aerial vehicle (eVTOL PAV) is increasing. eVTOL configurations that will be used for UAM are classified by lift-and-cruise, tilt rotors, tilt-wings, tilted-ducted fans, multicopters, depending on propulsion types. This study tries to perform preliminary conceptual design for a given mission profile using reverse engineering techniques by taking the multicopter type Airbus's CityAirbus as a basic model. Wetted area, lift to drag ratio, drag coefficients were calculated using the OpenVSP which is an aerodynamic analysis software. The power required for each mission section of CityAirbus were calculated, and the corresponding battery and motor were selected. Also, total weight was predicted by estimating component weights of eVTOL.

대도시 도심의 교통 정체를 해결하기 위한 방법의 하나로 전기수직이착륙 개인항공기(eVTOL PAV)를 활용한 도심항공 모빌리티(UAM)의 관심이 증가하고 있다. 도심항공 모빌리티에 사용할 비행체인 eVTOL은 추진방식에 따라 복합형, 틸트 로터형, 틸트 날개형, 틸트 덕티드 팬형, 멀티콥터형으로 분류된다. 본 연구에서는 멀티콥터형인 에어버스사의 시티에어버스를 기본 모델로 주어진 임무 형상에 맞게 역설계 기법을 사용하여 기본 개념설계를 수행하였다. 공력해석 프로그램인 OpenVSP를 사용하여 표면적과 양항비, 항력계수를 계산하였다. 각 임무 구간별 소요되는 동력을 계산하였고, 그에 맞는 배터리와 모터를 비교하여 선정하였다. 또한 eVTOL 구성품별 중량을 추정하여 전체 총 중량을 예측하였다.

Keywords

References

  1. Mentalfloss, Here's how much traffic congestion costs the world's biggest cities, [Internet]. Available : https://www.mentalfloss.com/article/530705/heres-how-much-traffic-congestion-costs-worlds-biggest-cities.
  2. IRS global, Trends of technologies for flying cars and autonomous vehicels, [Internet]. Available : https://www.irsglobal.com/bbs/board1/14565.
  3. Deloitte, The elevated future of mobility, [Internet]. Available :https://www2.deloitte.com/us/en/insights/focus/future-of-mobility/evtol-elevated-future-of-mobility-summary.html.
  4. C. J. Hwang, "Status and challenges of urban air mobility development," Current industrial and technological trends in aerospace, Korea Aerospace Research Institute, Vol. 16, No. 1, pp. 33-41, 2018.
  5. Aviation today, eVTOL design, [Internet]. Available : https://www.aviationtoday.com/2020/08/31/room-multicopters-electric-vtol/.
  6. Volocopter, [Internet]. Available : https://www.smithsonianmag.com/innovation/photos-rise-volocopter-180949828/.
  7. Wikipedia, Quadcopter, [Internet]. Available : https://en.wikipedia.org/wiki/Quadcopter.
  8. C. Silva et al. "VTOL urban air mobility concept vehicles for technology development," NASA's aeronautics research mission directorate, AIAA, Jun 2018
  9. eVTOL news, Volocopter 2X, [Internet]. Available : https://evtol.news/volocopter-2x/.
  10. A. Bacchini and E. Cestino, "Electric VTOL Configurations Comparison," Aerospace, MDPI, 2019, 6, 26; doi:10.3390/aerospace6030026.
  11. S. S. Chauhan and J. R. R. A. Martins, "Tilt-wing eVTOL takeoff trajectory optimization," Journal of aircraft, Vol. 57, No. 1, pp. 1-20, 2019. https://doi.org/10.2514/1.c035859
  12. Urban air taxi, Ehang 184, [Internet]. Available : https://www.urban-air-taxi.com/project/ehang-184/.
  13. Theverge, Cora, [Internet]. Available : https://www.theverge.com/2020/2/4/21122341/wisk-flying-taxi-kitty-hawk-boeingcora-new-zealand.
  14. eVTOL news, Joby s4, [Internet]. Available : https://evtol.news/joby-s4/.
  15. Bellflight, Bell nexus 4, [Internet]. Available : https://www.bellflight.com/404?aspxerrorpath=/products/bell-nexus.
  16. Futurecar, Lilium, [Internet]. Available : https://m.futurecar.com/3213/Air-Taxi-Startup-Lilium-Tests-its-Prototype-5-Passenger-VTOL-Electric-Jet.
  17. Airbus, CityAirbus, [Internet]. Available : https://www.airbus.com/innovation/zero-emission/urban-air-mobility/cityairbus.html.
  18. M. E. Balli, "eVTOL aircraft conceptual design and optimization," Master thesis, Politechnico Di Milano, Milan, Italy, 2020.
  19. Business insider, Cityairbus, [Internet]. Available : https://www.businessinsider.com/cityairbus-makes-first-public-flightairbus-flying-taxi-evtol-2020-7.
  20. J. G. Leishman, Principles of Helicopter Aerodynamics, 2nd ed. US: Cambridge Univ Pr, 2006.
  21. M. J. Park, J. S. Jang, and D. J. Lee, "Numerical study on aerodynamic characteristics of ducted fan UAV depending on the shape of the duct in hover," in The Korean Society for Aero nautical and Space Sciences KSAS Fall Conference, Jeju: Korea, pp. 32-36, Nov. 2012.
  22. P. Pradeep and P. Wei, "Energy efficient arrival with RTA constraint for urban eVTOL operations," American Institute of Aeronautics and Astronautics, Vol. 106, No. 1, pp. 25-57, 2006.
  23. L. W. Kohlman, M. D. Patterson, and B. E. Raabe, Urban air mobility network and vehicle type-Modeling and assessment, NASA/TM-2019-220072, February 2019.
  24. European Aviation Safety Agency, Certification specifications for small rotorcraft, Nov 2007.
  25. M. Shamiyeh, R. Rothfeld, and M. Hornuug, "A performance benchmark of recent personal air vehicle concepts for urban air mobility," in 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizonte: Brazil, pp.1-12, Sep 2018.
  26. Passenger, Crew and Baggage Weight, Revision 1, Advisory circular AC 119-4, Lower Hutt: NZ, Civil Aviation Authority, 2005.
  27. DNK, 18650 and 2170 battery, [Internet]. Available : https://www.dnkpower.com/teslas-mass-production-21700-battery/.
  28. Insideevs, Tesla 4680 battery, [Internet]. Available : https://insideevs.com/news/456644/tesla-shows-4860-cells-and-pack/.
  29. A. Datta, "Commercial intra-city on demand electric VTOL status of technology," NASA Aeronautics Research Institute, FY 2017 TVF working group-2 report, Jan 2018.
  30. F. Anton, Hybrid electric drive system for aircraft and systhetic fuel, Siemens AG eAircraft, Brandenburg energy day, Cottbus, May 2019.
  31. R. W. Prouty, Helicopter Performance S,tability, and Control, Malabar, FL: Krieger Publishing Company, 2002.
  32. OpenVSP, [Internet]. Available : http://openvsp.org/.
  33. R. M. Plencner, P. Senty, and T. J. Wickenheiser, Propeller performance and weight predictions appended to the Navy/NASA engine program, National Aeronautics and Space Adminstration Lewis Research Center, Cleveland, Ohio, Tech nical Report NAS 1.15:83458, 1983.
  34. eVTOL, Carbon fiber ducts, [Internet]. Available : https://evtol.com/features/cityairbus-performs-tethered-first-takeoff/.