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CONSTANT RATIO CURVES IN THE ISOTROPIC PLANE AND

THEIR DEFLECTION PROPERTIES

Jin Ju Seo a, ∗ and Seong-Deog Yang b

Abstract. We define the constant ratio curves in the isotropic plane and investi-
gate their deflection properties.

1. Introduction

One of the non-Euclidean geometries which is of uttermost importance is Lorentzian

geometry, which provides a mathematical formulation of the relativistic mechanics of

Einstein. On the other hand, the classical mechanics, which is often called Galilean

mechanics, can be formulated in terms of isotropic geometry, which is often called

Galilean geometry in many literatures. One of the standard references for this sub-

ject is [8].

It is a very interesting task to compare the Euclidean plane E2, the Lorentzian

plane L2 and the isotropic plane I2. Many concepts and propositions from Euclidean

geometry have corresponding counterparts in Lorentzian and isotropic geometries.

Our main goal in this article is to examine one such proposition, which is about

constant ratio curves in the isotropic plane I2 and their deflection properties. In

any of the Euclidean, Lorentzian, or isotropic plane with a point F and a line ℓ

preassigned, a constant ratio curve is the set of points P such that the ratio of the

distance between P and F to the distance between P and ℓ is constant. In the

Euclidean plane E2, they turn out to be ellipses, parabolas, or hyperbolas. They

have so many interesting properties. In particular, the deflection property says that

if a particle is emanated from a focus, then after hitting the curve the particle

proceeds toward or away from the other focus. See Figure 1.
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Figure 1. The deflection property of ellipses and hyperbolas in E2

We investigate what the constant ratio curves in the isotropic plane look like and

whether or not they also have the deflection properties. Constant ratio curves in

the Lorentz plane L2 and their deflection properties are studied in [5].

This article is organized as follows: In Section 2, we collect some known facts.

In Section 3, we derive the isotropic transformations of I2 using the isometries of

the Lorentzian three-space. In Section 4, we look at the angles and perpendicularity

in I2. In Section 5, we study the distance between a point and a line in I2. In

Section 6, we look at the constant ratio curves in I2 with a non-vertical directrix

and its deflection property. In Section 7, we look at the constant ratio curves in

I2 with a vertical directrix. This article is based on the first author’s work for a

doctoral degree [6].

2. Preliminaries

The Euclidean plane E2, the isotropic plane I2, and the Lorentzian plane L2 are

related by the following equation for the metric:

ds2 = dx2 + ϵdy2.

If ϵ = 1, 0,−1, we obtain the metric of E2, I2,L2, respectively.

The descriptations about Euclidean plane E2 and the Lorentz plane L2 in this

paper are based on the terminologies, notation, and contents of [5], [6], [9] and [10].

In particular, we use x, y for the standard coordinate system for E2, x, t for L2, and

x, l for I2.

2.1. A metrical description of I2 In terms of the x, l coordinates, the metric of

the isotropic plane is dx2. Then, as in E2 and in L2, the inner product, the norm,

and the distance function are naturally defined in the following way.
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Definition 2.1. For two vectors (x1, l1), (x2, l2) ∈ I2, define

(2.1) ⟨(x1, l1), (x2, l2)⟩I := x1x2.

⟨ , ⟩I is called the isotropic inner product.

The Cauchy-Schwarz Inequality in E2 or in L2 says that

(2.2) ⟨⃗a, b⃗⟩
2

E ≤ ⟨⃗a, a⃗⟩E⟨⃗b, b⃗⟩E or ⟨⃗a, b⃗⟩
2

L ≥ ⟨⃗a, a⃗⟩L⟨⃗b, b⃗⟩L,

respectively. In I2, we have an equality rather than an inequality.

Lemma 2.2 (Cauchy-Schwarz Equality). Given two arbitrary vectors a⃗, b⃗, we have

(2.3) ⟨⃗a, b⃗⟩
2

I = ⟨⃗a, a⃗⟩I⟨⃗b, b⃗⟩I.

Proof. Let a⃗ = (x1, l1), b⃗ = (x2, l2). Then ⟨⃗a, b⃗⟩I = x1x2, ⟨⃗a, a⃗⟩I = x21, ⟨⃗b, b⃗⟩I = x22,

hence the result follows. �

Given a vector X = (x, l) ∈I2, we define

||X||I :=
√
⟨X,X⟩I

which is called the isotropic norm of X.

Definition 2.3. Given two vectors X = (x1, l1) and Y = (x2, l2), we define

(2.4) d(X,Y ) := ||X − Y ||I

which is called the distance between X and Y .

According to the previous definition,

||(x, l)||I = |x|, d ((x1, l1), (x2, l2)) = |x1 − x2|.

If △ABC is a Euclidean triangle in E2, then d(B,C) + d(C,A) > d(A,B).

If △ABC is a Lorentzian triangle in L2 with
#    »

BC,
#    »

CA timelike, then d(B,C) +

d(C,A) ≤ d(A,B). See [1]. If △ABC is an isotropic triangle in I2 with d(A,B) =

max{d(A,B), d(B,C), d(C,A)}, then (cf. [8, p. 202])

d(B,C) + d(C,A) = d(A,B).

Many concepts such as points, lines, rays, segments, vectors, parallel lines, a

direction vector of a line, etc, from Euclidean and Lorentzian plane geometries are

also defined in the isotropic plane in much the same way, which we do not elaborate

in this article.
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3. Derivation of the Isotropic Transformations of I2

A complete description of the isotropic plane would not be complete without

the description of the transformations in this geometry. Recall that an isometric

transformation is a map f which satisfies that

d(P,Q) = d(f(P ), f(Q)) for any two points P,Q

and that the isometric transformations of E2 or in L2 can be completely determined

from the metric. See [5] for example for the derivation of the isometries of the

Lorentzian plane from the Lorentzian metric. However, this is not the case for I2.
It can be immediately seen that any map of the form

f(x, l) = (x, g(x, l))

for any function g : R2 → R satisfies

d(f(x1, l1), f(x2, l2)) = d ((x1, g(x1, l1)), (x2, g(x2, l2))) = |x1 − x2|

= d((x1, l1), (x2, l2)).

In particular, such a map f needs not be affine. So in order to determine the isotropic

transformation of I2, we need a different approach. [8] does it from the viewpoint

of the classical mechanics. The most geometric approach, in our opinion, is to

look at the specific model of I2, which we do in the next subsection. We present

two derivations of the isotropic transformation, one is extrinsic, and the other is

intrinsic.

3.1. An extrinsic derivation of isotropic transformations [8, §13] regards
isotropic geometry as a limiting case of Euclidean and Lorentzian geometries. Isotropic

plane is in fact the lightlike plane in the three-dimensional Lorentz-Minkowski space

L3, and the isotropic plane geometry is the limiting geometry as we tilt and rescale

the Euclidean planes or Lorentzian planes in L3 appropriately. See [3].

The coordinates y and x + t in the lightlike plane correspond to x and l in I2.
We will derive the isotropic transformations using this model. A novel feature of

this approach is that we obtain the shapes of circles in this geometry in a natural

manner.

Fix an arbitrary real number k ∈ R and consider the lightlike plane

Πk := {(x, y, t) ∈ L3 : x− t = k}.

A good coordinate system for Πk is y, x+ t.
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Figure 2. A lightlike plane in L3 and its coordinate system

Note that the metric of L3 restricted to Πk becomes dy2. This Πk is our model

of the isotropic plane. We want to see how isometries of L3 which preserves Πk look

like.

Firstly, we consider translations. The following is a translation of L3 which

preserves Πk: xy
t

 7→

XY
T

 =

xy
t

+

d/2e
d/2

 .

We see that

(3.1)

(
Y

X + T

)
=

(
y

x+ t

)
+

(
e
d

)
.

Secondly, we consider the reflections which preserve Πk:xy
t

 7→

XY
T

 =

 x
−y
t

 ,

xy
t

 7→

XY
T

 =

−x+ k
y

−t− k

 .

We see that

(3.2)

(
Y

X + T

)
=

(
−y
x+ t

)
,

(
Y

X + T

)
=

(
y

−(x+ t)

)
We remark that these two reflections are not equivalent.

Thirdly, we turn our attention to rotations. It is very well known that there are

three kinds of rotations in L3, which are called the elliptic, hyperbolic and parabolic

rotations in L3 depending upon the causal character of the axis of rotation. The
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typical rotations are

Me :=

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 , Mh :=

coshϕ 0 sinhϕ
0 1 0

sinhϕ 0 coshϕ

 ,

Mp :=

1− ψ2/8 ψ/2 ψ2/8
−ψ/2 1 ψ/2
−ψ2/8 ψ/2 1 + ψ2/8

 ,

where θ, ϕ, ψ are arbitrary real numbers which represent the magnitude of rotation.

Among them,

xy
t

 7→

XY
T

 :=Mp

xy
t

 preserves Πk . Now fix arbitrary (a, b, c) ∈

L3 and consider the followingxy
t

 7→

XY
T

 :=Mp

xy
t

−

ab
c

+

ab
c

 .

This is clearly an isometry of L3. Direct calculations show that X−T = x− t, hence
this map preserves Πk. Furthermore,

(3.3)

(
Y

X + T

)
=

(
1 0
ψ 1

)(
y

x+ t

)
− b

(
0
ψ

)
+

(a− c− k)

2

(
ψ

ψ2/2

)
.

There are the rotations in Πk. Note that there are 3, not 4, parameters here. Namely,

a− c, b and ψ. Here, ψ corresponds to the magnitude of the rotation.

Before we interpret these in terms of the isotropic plane, let’s think about the

trajectory of a point (x0, y0, t0) ∈ Πk as ψ varies (with a, b, c fixed). There are two

cases to consider.

Firstly, if (a, b, c) ∈ Πk, i.e. if a− c− k = 0, then

(3.4) Y = y0, X + T = (y0 − b)ψ + x0 + t0

so the trajectory of (x0, y0, t0) is a null line in Πk. This line corresponds to a vertical

line in the isotropic plane, and later we will see that it is one half of an isotropic

circle.

Secondly, if (a, b, c) ̸∈ Πk, i.e. if a − c − k ̸= 0, then ψ = 2(Y − y0)/(a − c − k),

hence

(3.5)

X + T = 2(x0 + t0) + (y0 − b)ψ + (a− c− k)ψ2/4

= 2(x0 + t0) + 2(y0 − b)
Y − y0
a− c− k

+
(Y − y0)

2

a− c− k
.

which is a parabola in Πk. This parabola corresponds to an i-circle of parabolic type

in the isotropic plane I2, in the language of [4].
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Remark 3.1. [8] called the curves given by (3.4) as circles, and curves given by

(3.5) as cycles, respectively. Our method of deriving the existence of (3.5) is quite

different from the way how [8] derived it.

In order to translate the above calculations in terms of isotropic plane, let’s

rename the coordinates of Πk from y, x+t to x, l. Combining all the transformations

(3.1), (3.2), (3.3) yields the isotropic transformations of I2.

Definition 3.2. The isotropic transformation of I2 is a map of the form(
x
l

)
7→

(
±1 0
ψ ±1

)(
x
l

)
+

(
x0
l0

)
, ψ, x0, l0 ∈ R.

There are four choices of the signs.

Isotropic plane geometry is the study of the properties of objects in the plane

which are invariant under this group of isotropic transformations.

The following isotropic transformations are of particular importance.

(3.6)

(
x
l

)
7→

(
x
l

)
+

(
d
e

)
,

(
x
l

)
7→

(
−x
l

)
,

(
x
l

)
7→

(
x
−l

)
,(

x
l

)
7→

(
1 0
ψ 1

)(
x
l

)
+ α

(
ψ

ψ2/2

)
+ β

(
0
ψ

)
α, β ∈ R.

Definition 3.3. We call the first transformation from (3.6) a translation, the second

and the third ones reflections, and the last one a rotation, respectively.

The rotations with α = β = 0 will be used in the next section to define the

magnitude of angles for two non-vertical intersecting lines.

A derivation of the isotropic transformations for the isotropic three-space I3 as a

hyperspace of the four dimensional Lorentz-Minkowski space L3 is discussed in [7].

3.2. An intrinsic derivation of isotropic transformations Now we present

an argument on how we may intrinsically derive the isotropic transformations f .

f preserving the metric is a must. Another natural requirement for f is that f is

affine. We want this because we want that lines are sent to lines by f . For Euclidean

or Lorentzian transformations, affinity follows from the metric, but not for isotropic

transformation as we observed in the beginning of this section. So we impose it as

a condition.
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Lemma 3.4. For an f : I2 → I2, suppose that

(1) f is affine,

(2) f preserves the metric.

Then f is of the following form: f

(
x
l

)
=

(
±1 0
c d

)(
x
l

)
+

(
x0
l0

)
.

Proof. Suppose that

(
x̃

l̃

)
= f

(
x
l

)
=

(
a b
c d

)(
x
l

)
+

(
x0
l0

)
. Then x̃ = ax + bl +

x0, l̃ = cx+ dl+ l0. Hence dx̃
2 = (adx+ bdl)2. This equals dx2 if and only if a2 = 1

and b = 0. �

Note that M :=

(
±1 0
c d

)
satisfies MT

(
1 0
0 0

)
M =

(
1 0
0 0

)
. Recall that the

Euclidean orthogonal group and the Lorentzian orthogonal group are

OE(2) :=
{
M ∈ M(2, 2) :MT

(
1 0
0 1

)
M =

(
1 0
0 1

)}
,

OL(2) :=
{
M ∈ M(2, 2) :MT

(
1 0
0 −1

)
M =

(
1 0
0 −1

)}
.

So we are very tempted to define

(3.7)

{
M ∈ M(2, 2) :MT

(
1 0
0 0

)
M =

(
1 0
0 0

)}
as the set of isotropic orthogonal matrices. However, while OE(2) and OL(2) are

1-dimensional this set is 2-dimensional as we see in the following.

Lemma 3.5. M belongs to the set in (3.7) if and only if M =

(
±1 0
c d

)
for some

c, d ∈ R.

Proof. Suppose M =

(
a b
c d

)
. Then MT

(
1 0
0 0

)
M =

(
1 0
0 0

)
if and only if a2 =

1, ab = 0, b2 = 0, from which the conclusion follows. �

For this dimensional reason, we want to have one more restriction for f , which

can be done in various ways.

3.2.1. Way 1) One way is to impose the condition that

(3.8) (detM)2 = 1.

Note that this condition follows from MT

(
1 0
0 ±1

)
M =

(
1 0
0 ±1

)
, but not from

MT

(
1 0
0 0

)
M =

(
1 0
0 0

)
. (3.8) forces d = ±1, and we recover the matrices we

want to have. Here, d = −1 corresponds to the reversing of the lightlike orientation.
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3.2.2. Way 2) In the previous subsection we observed what the rotations are in

the isotropic plane, hence we know what isotropic circles are. Once we know the

shapes of circles, we can describe an intrinsic way of finding the formula for isotropic

transformations as follows.

Lemma 3.6. For an f : I2 → I2, suppose that

(1) f is affine,

(2) f preserves the metric,

(3) f preserves the isotropic circle {(x, l) ∈ I2 : l = Ax2+2Bx+C} with A ̸= 0.

Then f is of the following form:

f

(
x
l

)
=

(
±1 0
ψ 1

)(
x
l

)
+

4B

A

(
0
ψ

)
+

1

2A

(
±ψ
ψ2/2

)
+ (±1− 1)

B

A

(
1
0

)
.

(There are 2, not 4, choices of signs, i.e. ++ or −−.)

Proof. From (1), (2), we see that

(
x̃

l̃

)
= f

(
x
l

)
=

(
±1 0
c d

)(
x
l

)
+

(
x0
l0

)
. That is,

x̃ = ±x+ x0, l̃ = cx+ dl + l0. Now l̃ = Ax̃2 + 2Bx̃+ C implies that

cx+ dl + l0 = A(±x+ x0)
2 + 2B(±x+ x0) + C.

Inserting ℓ = Ax2 +2Bx+C, we see that a quadratic polynomial of x is 0 for all x,

which implies that the three coefficients are all 0, from which we have that

d = 1, x0 =
±(c+ 2B)− 2B

2A
, ℓ0 =

4B

A
c+

1

4A
c2.

So the conclusion follows. �

3.3. Isotropic orthogonal group For these reasons, we define

Definition 3.7.

OI(2) := {M ∈ M(2, 2) :MT

(
1 0
0 0

)
M =

(
1 0
0 0

)
, (detM)2 = 1},

OI(2)+ := {M ∈ OI(2) :M22 > 0},

SOI(2) := {M ∈ OI(2) : detM = 1},

SOI(2)+ := OI(2)+ ∩ SOI(2).

Now an isotropic transformation f : I2 → I2 is defined to be a map

f(X) =MX + T, M ∈ OI(2), T ∈ I2.

The intrinsic approach is good because it is similar in nature to the derivation of

Euclidean and Lorentzian transformations. But this is bad in the sense that we do
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Figure 3. Angles and lengths of arcs in E2, L2, I2

not get that the rotations are much more than just OI(2) part (cf. (3.6)). In order

to get the shape of the rotations, we need extra care as we do in Lemma 3.6.

For us, we always look at the lightlike plane model of the isotropic plane when

we want to understand or get an intuition of what is going on.

4. Angles and Perpendicularity

4.1. Special rotations Consider the rotation (3.6) with α = β = 0, that is,

f

(
x
l

)
=

(
1 0
ψ 1

)(
x
l

)
.

It rotates the vector

(
x
l

)
to

(
x

l + ψx

)
. In particular, the x-coordinate does not

change. We regard ψ as the signed magnitude of this rotation. Note that this f

fixes the entire l-axis pointwise.

4.2. Oriented angles and their magnitudes An oriented angle ∠(v⃗1, v⃗2) is an

ordered pair of two vectors v⃗1, v⃗2 with the same base point. Given three non-collinear

points A,B,C, then ∠ABC := ∠( #    »

BA,
#    »

BC).

We define the magnitudes of oriented angles using the special rotation.

Definition 4.1. Given an oriented angle ∠(v⃗1, v⃗2) with the common starting point

(x0, l0) and ending points (x1, l1) and (x2, l2), respectively, suppose that there are

ψ ∈ R and t ∈ R+ such that(
x2 − x0
l2 − l0

)
= t

(
1 0
ψ 1

)(
x1 − x0
l1 − l0

)
.

Then we say that the oriented angle ∠(v⃗1, v⃗2) is measurable, define ψ to be its

signed magnitude, and denote it by

(4.1) m (∠(v⃗1, v⃗2)) := ψ.
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Figure 4. Signed magnitude of an oriented angle

An oriented angle is non-measurable if it is not measurable.

Note that there are oriented angles whose signed magnitudes are not defined. An

example is ∠(v⃗1, v⃗2) with v⃗1 = (1, 1) and v⃗2 = (−1, 1). See Figure 5.

Lemma 4.2. An oriented angle ∠(v⃗1, v⃗2) is measurable if and only if ⟨v⃗1, v⃗2⟩I > 0.

Proof. A proof follows by checking all possible cases. �

Lemma 4.3. The signed magnitude of an oriented angle formed by the positive x-

axis and its image by f

(
x
l

)
:=

(
1 0
ψ 1

)(
x
l

)
is equal to the slope (in the sense of

Euclidean geometry) of the image.

Proof. This is true because ψ is equal to the slope of the image of the positive x-axis

by f . �

Corollary 4.4. The signed magnitude of an angle between two intersecting non-

vertical lines is equal to the difference of their slopes.

In order for this to be a well defined quantity in the isotropic plane geometry, it

must be invariant under isotropic transformations.

Lemma 4.5. The signed magnitude of an oriented angle from v⃗1 to v⃗2, if defined,

is invariant under any orientation preserving isotropic transformation.

Proof. Clearly translations do not change the signed magnitude while reflections

change its sign but not the absolute value. Finally we can check that rotations do

not change the signed magnitude by working in coordinates. �
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Figure 5. Measurable angles and non-measurable angles

4.3. Perpendicularity

Definition 4.6. Two vectors v and w are said to be perpendicular to each other if

(4.2) ⟨v, w⟩I = 0.

Two straight lines are said to be perpendicular to each other if the direction vectors

of them are perpendicular to each other.

Lemma 4.7. Two nonzero vectors v⃗, w⃗ are perpendicular to each other if and only

if at least one of them is of the form

(4.3) (0, l)

for some l ∈ R \ {0}. A vector of the form (4.3) is perpendicular to any vector in

I2.

Proof. Simple calculation, omitted. �

Definition 4.8. We call a nonzero vector of the form (4.3) a vertical vector. We

call a straight line a vertical line if its direction vector is a vertical vector. We call

a vector or a line which is not vertical a non-vertical vector or a non-vertical line,

respectively.

In terms of Lorentzian geometry, a vector is vertical if and only if it is null, and

is non-vertical if and only if it is spacelike.

Lemma 4.9. Given two straight lines ℓ1 : a1x+b1l+c1 = 0 and ℓ2 : a2x+b2l+c2 = 0,

the following are equivalent:

• ℓ1 and ℓ2 are perpendicular to each other.

• b1b2 = 0.

• Either ℓ1 or ℓ2 is vertical.

Proof. (bi,−ai) is a direction vector of line aix+ bil+ ci = 0. The conclusion follows

from the fact that ⟨(b1,−a1), (b2,−a2)⟩I=b1b2 by (2.1). �
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Lemma 4.10. Given a point P (x0, l0) and a non-vertical line ℓ : ax + bl + c = 0

which does not pass through P , there exists exactly one straight line m which passes

through P (x0, l0) and is perpendicular to ℓ. Its equation is x = x0.

Proof. Since (b,−a) is a direction vector of ℓ, (0, 1) is a direction vector of the line

perpendicular to ℓ. There is only one such line passing P (x0, l0), which is x = x0. �

5. Distance between a Point and a Line

5.1. Vertical distance If two points P,Q are on a vertical line, then d(P,Q) = 0.

But, it is helpful to have a distance between P,Q, one of whose use is exhibited in

Section 6.

[8] introduce a definition for it. The distance between P (a, b) and Q(a, c) is

defined to be |b−c|. Unfortunately, it is not clear why this is chosen as the definition.

For this matter, we use angles, motivated by the facts that in E2 and also in L2

the lengths of arcs are related to angles and that the vertical line segment PQ in I2

is in fact a circular arc.

Definition 5.1. Given two points P (a, b) and Q(a, c) on a vertical line, we define

the orient distance d′(P,Q) as the signed measure of the oriented angle ∠(POQ)

where O := (a− 1, b). That is,

d′(P,Q) := m(
#    »

OP,
#    »

OQ).

This will be used in the next subsection in defining the distance between a point

and a non-vertical line.

Lemma 5.2. |d′(·, ·)| is equal to the distance defined in [8].

Proof. If P = (a, b) and Q = (a, c), then d′(P,Q) = c − b, hence the conclusion

follows. �

The following lemma shows that in fact one may use O′ = (a−1, d) for any d ∈ R
instead of O in the above definition.

Lemma 5.3. Given two points P and Q on a vertical line ℓ and two points O and

O′ on another vertical line ℓ′, we have

m(
#    »

OP,
#    »

OQ) = m(
#     »

O′P ,
#      »

O′Q).

Proof. Trivial. �
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Figure 6. Foot of perpendicular

5.2. Distance between a point and a line Now we are ready to talk about the

distance between a point and a line.

In E2 and in L2, the foot of perpendicular H drawn from a point P onto a line

ℓ which does not go through P is used in the definition of d(P, ℓ). However, the

situation is not so in I2. First of all, if ℓ is vertical, then any point H on ℓ is a foot

of perpendicular drawn from P onto ℓ. That is, the foot of perpendicular is not

unique.

If ℓ is non-vertical, then there is a unique foot of perpendicular H. However,

d(P,H) = 0. So, if we define the distance between a point and a non-vertical line

as the distance between the point and the foot of perpendicular, then the distance

is 0, which is not good.

Albeit these difficulties, we can define the distance between a point and a line as

follows.

Definition 5.4. If ℓ is a non-vertical line, we define

dNV (P, ℓ) := |d′(P,H)|

where H is the foot of perpendicular drawn from P onto ℓ. If ℓ is a vertical line, we

define

dV (P, ℓ) := d(P,H)

where H is an arbitrary point of ℓ.

dV is well-defined because d(P,H1) = d(P,H2) for any H1,H2 ∈ ℓ if ℓ is vertical.

Lemma 5.5. Given P (x0, l0) and ℓ : ax+ bl+ c = 0, if ℓ is non-vertical, then b ̸= 0

and

dNV (P, ℓ) =

∣∣∣∣ax0 + bl0 + c

b

∣∣∣∣ .
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and if ℓ is non-vertical, then b = 0, a ̸= 0, and

dV (P, ℓ) =
∣∣∣x0 + c

a

∣∣∣
Proof. If ℓ is non-vertical, it is easy to see that the coordinates of the foot of pepen-

dicular H drawn from P onto ℓ is H =

(
x0,−

ax0 + c

b

)
, hence the formula for dNV

follows.

The formula for dV is trivial. �

We will use dNV in Section 6 in defining the constant ratio curves in I2, which
are the analogues of conic sections.

6. Deflection Property of Constant Ratio Curves with a
Non-vertical Directrix

The conic sections in E2 or in L2 have a very interesting property: A particle em-

anated from one focus proceeds, after hitting the conic section and being deflected,

toward or away from the other focus. See [5] for a proof in the Lorentzian case.

In this section, we investigate whether this property still holds for similar kind

of curves I2. We first define the analogues of conic sections in I2.

Definition 6.1. Given a point F and a non-vertical line ℓ in I2 and a positive

constant e, we call the following set

CNV :=
{
P ∈ I2 : d(P, F ) = e · dNV (P, ℓ)

}
a constant ratio curve, where dNV is defined in Definition 5.4. We call F , ℓ, and e

the focus, the directrix, and the eccentricity of the constant ratio curve.

By applying isotropic transformations if necessary, we may assume that they are

F (0, l0) with l0 > 0 and ℓ : l = 0 in I2. The following is immediate from the

definitions.

Proposition 6.2. Let CNV be the constant ratio curve in I2 with the focus F =

(0, l0), the directrix ℓ : l = 0, and the eccentricity e > 0. Then P (x, l) ∈ CNV if and

only if

|x| = e|l|, or equivalently l = ±e−1x.

Proof. This is trivial from the various definitions. �
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Figure 7. The deflection property of CNV

Note that there is a point P ∈ CNV such that d(P, F ) = dNV (P, ℓ) = 0, unlike

the constant ratio curves in E2.

It is easy to see that the above CNV coincides with the constant ratio curve with

F ′(0,−l0) as the focus, ℓ : l = 0 as the directrix , and e > 0 as the eccentricity. We

call F ′ the second focus of CNV .

Now, we want to find if CNV has the deflection property aforementioned. To see

this, let’s consider a particle emanated from F . Suppose that it hits the constant

ratio curve CNV at P and gets deflected. As in the Euclidean and in the Lorentzian

case we require in Figure 7 that α = β.

We have the following.

Theorem 6.3. Given a constant ratio curve curve CNV in I2 with the focus F and

the directrix ℓ, suppose that a particle is emanated from F , and is deflected after

hitting CNV . Then, the line which contains the trajectory of the particle after the

deflection passes through the second focus F ′ of CNV .

Proof. Let P be the point where the particle hits CNV . Without loss of generality

we may assume that F = (0, l0), ℓ : l = 0 and P = (x, e−1x) with x > 0. The case

for x < 0 can be proved similarly, and is omitted.

The slope of FP is
e−1x− l0
x− 0

= e−1 − l0
x
.

So α = e−1 −
(
e−1 − l0

x

)
= l0

x . (Recall that the angle is the difference of slopes.)

So β = α = l0
x . Let L̃ be the line containing the trajectory of the particle after

deflection. The slope of L̃ is e−1 + β = e−1 + l0
x and the equation of L̃ is l̃ =

(e−1 + l0
x )(x̃ − x) + e−1x. The l-intercept of L̃ is (e−1 + l0

x )(0 − x) + e−1x = −l0.
Therefore L̃ passes through F ′ := (0,−l0) regardless of the position of the point P

in the constant ratio curve l = e−1x. �
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7. Deflection Property of Constant Ratio Curves with a
Vertical Directrix

In Definition 6.1, the directrix ℓ was assumed to be non-vertical. Let’s think

about what happens if ℓ is vertical. In this case, an appropriate definition of a

constant ratio curve CV would be the following:

Definition 7.1. Given a point F and a vertical line ℓ in I2 and a positive constant

e, we call the following set

CV :=
{
P ∈ I2 : d(P, F ) = e · dV (P, ℓ)

}
a constant ratio curve, where dV is defined in Definition 5.4. We call F , ℓ, and e the

focus, the directrix, and the eccentricity of the constant ratio curve.

For simplicity, we assume 0 < e < 1 or e > 1. By applying a translation and a

reflection if necessary, we may set F = (0, 0) and ℓ : x = a for some a > 0. It is

clear that (x, l) ∈ CV if and only if x = e
e±1a, so CV is a pair of vertical lines.

What could be the second focus? Well, before trying to answer this question, we

observe that CV = {P ∈ I2 : d(P, F̃ ) = e · dV (P, ℓ)} for any point F̃ of the form

(0, l̃). Therefore, F̃ (0, l̃) for any l̃ is also a focus of CV with respect to ℓ. But this

F̃ is not the second focus we are looking for. Therefore, it is not clear which is the

right focus to start with.

Even though there is an ambiguity for the choice of a focus, we may still proceed

further as follows. A basic idea is that for any vertical line x = x0, the transformation

(x, l) 7→ (2x0 − x, l) still may be thought of as a natural reflection with respect to

the vertical line x = x0. Then the vertical line x = 1
2

(
e

e+1a+
e

e−1a
)
= e2

e2−1
a, which

is obtained as the mid line for CV , is a line of symmetry for CV . Then the reflections

F ′ and ℓ′ of F and ℓ with respect to this midline of symmetry, that is,

F ′ =

(
2

e2

e2 − 1
a, 0

)
, ℓ′ : x =

e2 + 1

e2 − 1
a,

turn out to be another pair of a focus and a directrix for CV . That is,

CV = {P ∈ I2 : d(P, F ′) = e · dV (P, ℓ′)}.
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Figure 8. A proposed deflection property of CV

This F ′ may be thought as the second focus. That is, we think of F and F ′ as a

pair of foci to think of for the deflection problem. Here we note that

0 < e < 1 ⇒ e

e− 1
a < 2

e2

e2 − 1
a < 0 <

e

e+ 1
a,

1 < e <∞ ⇒ 0 <
e

e+ 1
a <

e

e− 1
a < 2

e2

e2 − 1
a.

So the position of F (0, 0) and F ′
(
2 e2

e2−1
a, 0

)
with respect to the constant ratio curve

CV : x = e
e±1a look as in Figure 8.

Now consider a particle emanated from F . After hitting the constant ratio curve

CV , will it proceed as is drawn in Figure 8? The difficulty in answering this question

stems from the fact that the foot of perpendicular onto a vertical line is not unique.

At this moment, we do not know how to answer this question.
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