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EVALUATIONS OF THE CUBIC CONTINUED FRACTION
BY SOME THETA FUNCTION IDENTITIES: REVISITED

DAE HYuN PAEK

ABSTRACT. In this paper, we exploit some known theta function identities involving
two parameters lx,, and l;m for the theta function 1 to find about 54 new values
of the Ramanujan’s cubic continued fraction.

1. INTRODUCTION

Ramanujan’s cubic continued fraction G(q), for |¢q| < 1, is defined by

3 g4q® @P+q¢t PB4

1+ 1 + 1 + 1 + -7

As stated in [8], there has been interest by number theorists in evaluating explicit

Glg) =2

values of G(e~™V") and G(—e ™V") for some positive rational numbers n. For

brevity, we write ¢, for eV throughout this paper. In 1984, Ramanathan [10]
_ V943V6—VT+3V6

(1+v5)VV5+v6
limit formula. Andrews and Berndt [3] also found the value of G(qi9) by employing

found the value of G(q10) such as G(q10) by using Kronecker’s

Ramanujan’s class invariants. In 1995, Berndt, Chan, and Zhang [5] evaluated G(g;,)
for n = 2, 10, 22, 58 and G(—gq,) for n = 1, 5, 13, 37 by using Ramanujan’s class
invariants. In addition, Chan [6] found explicit values of G(gy,) for n = %, 1,2, 4 and
G(—qp) for n =1, 5 by applying some reciprocity theorems for the cubic continued
fraction.

In the 2000s, Adiga, Vasuki, and Mahadeva Naika [2] evaluated G(¢4) and G(—¢,)
125 49 1 1
3 37 3 750 T4T

Mahadeva Naika, and Madhusudhan [1] found explicit values of G(—¢,) for n = %,

by using some modular equations. Moreover, Adiga, Kim,
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29
3 3 5 8. 5,3,6,7,8,10, 12, 16, 28 and G(—qy,) forn =3, 1, 1, §, 2,3, 4, T by

using modular equations, in particular some eta function identities.
In the 2010s, Yi et al. [12] evaluated G(g,) for n = %, 1, 4, 9 and G(—gq,) for
n = 4, 9 by employing modular equations of degrees 3 or 9. In addition, Pack and Yi

1. 4. 5, 1,3, 5. Meanwhile, Yi [11] systematically found values of G(gy) for n = 3
1

[7] derived some algorithms based on modular equations of degrees 3 or 9 to evaluate

G(gn) for n =3, 38 61 36, 81, 144, 324 and G(—gq,) for n = 3, 136, 36, 81. Paek and

Yi [8] showed how to evaluate G(g,) and G(—gy) for n = 4™, =, 2. 4™ and

with some nonnegative integer m. In particular, they evaluated G(g,) for n = %, %,
. 15, 350 1350 L, 8, 16, 32, 64, 128, 256 and G(—qy) for n = 1, 3, 15, 35, 1350 8, 16,
32, 64 by constructing some algorithms based on modular equations of degrees 3 or

24m

9. Moreover, Paek and Yi [9] derived some algorithms based on modular equations
24m 1

of degrees 3 or 9 to evaluate G(gn) and G(—gy) for n = 23~ —— and 35~ with
m =1, 2, 3, and 4. In other Words they gave specific values of G(g,,) for n = % %
126 11 1 1 1 1 1 _ 832 1 1 1 1 1 1
6§ 1 20 d8 a6 20 381 a0d G—an) forn =5, %, 5, 55 450 960 1030 39
Table 1
G(Qn) G(_Qn)
Ramanathan [10] | 10
Berndt et al. [5] |2, 10, 22, 58 1,5, 13, 37
Chan [6] 2.1,2,4 1,5
. 1141 1 4 111 1
Yi [11} 29 37 3% 47 9> Q> 25 39 40 9o 2a 37 4—a 7
3,6,7,8,10, 12, 16, 28
Adiga et al. [2] 4 %, %, %9, %, 11117
. 111 1
Adiga et al. [1] 5, %, 90 97 1, 3, D
Yi et al. [12] 3, 1,4,9 4,9
Pack and Yi [7] |3, 3¢, &1 36, 81, 144, 324 | 3, 1§, 36, 81
. 111 1 1 1 11 1 1 .1
Pack and Yi[8] | 3, 3, § 167 32> 128" 180 167 320 128
1, 8, 16, 32, 64, 128, 256 | 8, 16, 32, 64
. 8 32 128 1 1 1 1 8 32 1 1 1 1
Pack and Yi [9] | 3, %, 5% 6 5 120 200 | 30 50 12 240 380 06
1l 1 1 1 11
487 96> 192 384 192> 384
. 1 4 9 16 36 144 5 20 |4 9 36 5 20 1 4
Yiand Pack [14] | 5,5, 5 5> 5> 50 9|5 5 509 9 5 I

80 1 4 16 1 4 16

80 L A 160 L A 16 190 97 45, 180
5, 20, 27, 45, 48, 80, 108,
180, 432, 720
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More recently, Yi and Paek [14] used some theta function identities involving
parameters hy, j and h; i for the theta function ¢ to establish evaluations of G(g,)

—1 4 9 16 36 lé% 5 20 80 1 4 16 1 4 16
forn=2,5.5 %% 59 9 9> 27 27727745’45745’5 20, 27, 45, 48, 80, 108,

180, 432, 720 and G(—gy) for n = 3, 2,38 3 20 L 4 920, 27, 45, 180. Table 1

shows a summary of some known values of n for G(g,,) and G(—¢,) in chronological

order.

1 1 4 8 16 32 64 128 1 1 4 9 16 36
Thus G(qn) were evaluated for n = 57373735 37 835 37 394759557 5 5o

144 1 1 1 2 4 5 20 8 1 1 1 1 4 16 1 1 4 16 1 1 1 1
5068 9299 99> 9 12> 16> 247 27> 27> 270 32> 450 45> 45> 48> 96> 128> 1927
384,123456789101216202227283236454858648081
108, 128, 144, 180, 256, 324, 432, 720.

1
Whereas G(fqn) were evaluated for n = 5733373 39 3 g, 39 435755 57 5o

1152 1 1 1 1 1 1 4 1 1 1 1 1 1 1,28, 4,5 7,
87 97 9 9 127 167 247 277 327 457 457 487 757 967 1287 147> 192> 384’

8,9, 13, 16, 20, 27, 32, 36, 37, 45, 64, 81, 180.

In this paper, we use some theta function identities involving parameters I ,, and
1. for the theta function ¢ to establish about 54 new values of G(g,) and G(—¢y)
such as G(—gs), G(—q;), and G(gp) and G(—gy) for n = %, %, g, ?, 1745, %, %, %

5 1 4 3 2 5 8 20 1 1 5 1 4 1
150 150 15 300 37 25 370 29 31 600 1050 135 135 3l 5i00 15> 24, and 60.

Ramanujan’s theta function v (q), for |¢| < 1, is defined by

_ i qn(n+1)/2
n=0

For any positive real numbers k and n, define [ , and l;m by

Y(=q) A C))
Rg(-g) " e T iy gy

where ¢ = e""V"™/* (See [13] for details). We now note that the following property

lk,n =

of lj, ,, in [13] will be useful for evaluating the cubic continued fraction later on.

(1.1) b, l,;

We also note general formulas for Gs(q%) and G3(— qz) in terms of I3, and I3,
respectively, in [13, Theorem 6.2(ii) and (v)] such as

1

1.2 Ggn) = ————
and
(13) GH(gz) = or

' 3731, +
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By taking cube root of (1.2) and (1.3), we have the values of G(qz) and G(—qz).
Hence, in view of (1.2) and (1.3), in order to find some explicit values of G* (qz) and
G3(—q%), it is sufficient to evaluate lém and [3 ,,, respectively. For brevity, we write

In, 1, for I3 n, 13 ,,, Tespectively.
2. EVALUATIONS OF [, AND [/,

We begin this section by recalling the values of I3 and 5 in [13], which play key
roles in evaluating some new values of [,,.
Lemma 2.1 ([13, Theorem 4.9(iv) and (v)]). We have
(i) la = (V2+3)4,

3/2
(i) 15 = <1+2‘/5> .

2/3
1++5 /
2

Note that [5 in Lemma 2.1(ii) was incorrectly recorded as in [13].

We now recall a theta function identity in [4, Entry 1(ii), p. 345] such as
3

¥(=q"?) v (—q)
2.1 1+ ——% | =14+ ——%.
- ( (=) W)
Rewriting (2.1) in terms of I, and lg,,, we have the next result.
Lemma 2.2 ([13, Theorem 4.5(i)]). For any positive real number n, we have
(2.2) (14 V3lalon)® =14 313 .

We first evaluate [,, for n = %, %, %, 1—18, and 18.
Theorem 2.3. We have
0) 1y = (VB va)/,

V1+3v2+3V3 -1

S R T Y S
(i) ¢ V1-3v2+3V3 -1
10 BVC O

VB2 VB

P Y113v2+3/3 1
V3(V3—V2)t

Y1-3v2+3v3 -1

(iv) 1

(v) s =
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Proof. Part (i) is clear by (1.1) and Lemma 2.1(i). For (ii), let n = 2 in (2.2) and
put Iy = (v2 + v/3)%* in Lemma 2.1(i), then we find that

(1+\/§(\/§+ x/§)1/4l%>3 =14+3(vV2+V3).

Taking the cube root of both sides of the last equation and simplifying to complete
the proof.

For (iii), let n = & in (2.2), put the value of l% obtained from (i), and repeat the
same argument as in the proof of (ii) to complete the proof. The proofs of (iv) and
(v) follow directly from (1.1). O

We next evaluate [,, for n = %, %, g, %, and 45.

Theorem 2.4. We have

(i) Iy = V5 -2,

(i) 1 = V28 +12v5 —1
9 6+3v5

(i) 1. = V28 — 125 — 1
1 —6+3V5

(iv) 1o = 6+ 3v5

9 )
5 /28412v5 — 1

V6 + 35

(V) l45 = .
V28 —12v5 — 1
Proof. Repeat the same argument as in the proof of Theorem 2.3. g

We now turn to evaluations of I/,. But we need the following theta function

identity with respect to I, and 1/,.

Lemma 2.5 ([12, Corollary 3.12]). For every positive real number n, we have

11
(2.3) (1t +3) <l4—l/4+3> = 1.

Note that (2.3) follows from a modular equation in [12, Theorem 3.11] such as

1 1

4 4 _ : _ _v(@ _ _¥(=q)

(P*—Q —9)( 1 A —1> =1 with P = q1/4wq(q3) andQ—ql/%(iﬁ).
In view of (2.3), we evaluate I+ for n = %, %, %, —118, 2, and 18.

Theorem 2.6. We have
(i) I =3+2v2,
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(ii) It = V2 + V3,
2
a+4+(a+1)\/a+4
3 3va
b+ 4 b+1)vb+4
() vt = T LR DVEEA
s 3 3vb

(iii) 1% =

©|

(v) = 3va(a+1++va?+4a)
3 (2a—1)Va+4
(vi) 7 3Vh(b+ 1+ Vb2 +4b)
B @-1)vb+4
where

) (V1+3\/§+3\@—1)4 ) (V1—3\/§+3\/§—1)4
a=—-+ and b= - + .
2 6(v2+3) 2 6(v3-v2)

Proof. For (i), let n = 2 in (2.3) and put the value of [y in Lemma 2.1(i), then it
follows that

(3-V2+V3)22 —2(5+3V3)z+3+V2+V3=0,

where z = I5!. Solving the last equation for x and using z > 1, we have the required

result.
The proofs of (ii)—(vi) are similar to that of (i). O
We now evaluate I for n = %, %, g % 5, and 45.
Theorem 2.7. We have
ooy 84+2V15
(i) I = —=,
3-V5
21
(i) 1% = 84 2vIo ﬁ,
5 3+V5
4 ve+4
(i) 1 = 4 e Dverd
9 3 3/c
d+4 d+1)vd+4
(iv) I'f = T +( TUvdF ;
1 3 3vd
(v) 1 = 3Ve(e+ 1+ +4c)
3 (2c—1)Ve+4d
(i) 1t — 3Vd(d+1+Vd +4d)
L @d-1)Vd+4
where
3 4 3 4
V28 +12v/5 —1 28 —12v5 — 1
1 1
c=—+ and d= -+ .

2 6(9+4v/5) 2 6(9—4v/5)
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Proof. The proof follows precisely along the same lines as that for Theorem 2.6. [

We evaluate some more values of I/* and [4 by employing the following theta

function identities involving 1/, ., and [,.

Lemma 2.8 ([9, Corollary 3.4]). For any positive real number n, we have

(2.4) I(VBIE +1) =122 —V3)
Note that (2.4) follows from a modular equation P4(Q? + 1) = Q?(Q? + 3) with
_ (= 2

P= q1/41(b(z)q and @ = 1/21/1() 6)

We also need the following theta function identity involving I/, and I/,,,.

Lemma 2.9 ([9, Corollary 3.2]). For any positive real number n, we have

(2.5) L (V31U — 1) =15, (1, + V3)
Note that (2.5) follows from a modular equation P4(Q? — 1) = Q?(Q? + 3) with
2
P = ql/i]?(f() and Q = 1/2¢()6)

In view of (2.4), and (2.5), we evaluate I} and [} for n = 3, 8, & and 72.

Theorem 2.10. Let a and b be as in Theorem 2.6. Then we have
(i) l'§4: %(a+1+\/612—i-—4161)2,
i) 1 =1 b+7)Vb+B+1)Vb+4 |
g 3v/6 — 31/B2 +4b + (b + 1)VF + 4b
(i) 1= 1 3(a+1)yva+ (5a —1)va+4 ’
8 (2a—1)\/a—|—4—3\/2a—1\/a2+4a+(a+1)\/m

. 3(b+1+4 Vb2 +4b)?
(IV) l72 = (2() . 1)2

Proof. For (i), let n = 2 in (2.4) and put the value of l2 in Theorem 2.3(ii), then we
deduce that
3zt —2v3(a+1)2? —2a+1=0,

where x = l%s. Solving the last equation for z and using x > 1, we complete the
9
proof.

For (ii), let n = 2 in (2.5), put the value of I, in Theorem 2.6(iv), and simplify
8
the equation to complete the proof '

The proofs of (iii) and (iv) are similar to those of (i) or (ii). O
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Theorem 2.11. Let a and b be as in Theorem 2.6. Then we have
(2a —1)vVa+4+ 3v2a — 1\/@2 +4a+ (a+1)Va? +4a

(i) l% = ’
* 3(a+ 1)va+3avatd—3v2a—1y/a® +4da+ (a+ 1)va? + da
) B = 14 b+7Vo+ b+ 1)Vo+4
1 — = )
2 38vE+31/82 + b+ (b + 1)VF + 45

3(a+1)va+ (5ba—1)va+4
(2a —1)Va+4+ 3\/2617—1\/002 +4a+ (a+ 1)\/@24—74@;
3\/5+3\/62 +4b+ (b + 1)Vb2 + 4b
(b+4)Vb+ b+ DVo+a—3\/02 + 4b+ (b+ )VEZ + 45

Proof. For (i), let n = % in (2.3) and put the value of I in Theorem 2.10(i), then
we find that ’

(iV) 14712 =

(31 —1)2z% — (31 — 101 + 3)z — I? + 31 = 0,

where x = l‘é and [ = l’§4. Employing Mathematica to solve the last equation for x,
9 9
we complete the proof. The proof of (ii) is similar to that of (i).
The proofs of (iii) and (iv) follow from (1.1). O

We evaluate /4 for n =3, 45 436 /20 L9 =5 "4 " 1 90 and 180.

Theorem 2.12. Let ¢ and d be as in Theorem 2.7. Then we have
(i) B = (24 V5)2(4 + VI5)?,
i _ 3+V15+ (4+V15)V3+ 56

i 3+VI5—V3-V5
(iii) I = (=24+v5)*(4+V15)?2,

i) 11 3+ VIB+(U+VI5)V3— VB
% 3+VI5—V3+v5
() B = 3le+ 1+ VET L),
(i) 1 =1 (c+ Vet (e+1)Ve+4d ’
5 3@—3\/c2+4c+(c+1)\/02+740
(vii) l%:é(dJrlJr\/M)z,
(d+T7)WVd+ (d+1)Vd+4

(viii) 4 =1-

180 3\/&—3\/d2+4d+(d+ DVd? 4 4d
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(i) 14 — 3(d+1+Vd?+4d)?
180 — (2d* 1)2 ’
() I =1 3(d +1)Vd+ (5d — 1)y/d + 4
45 — L ’
1 (2d — )WVd+ 4 - 3V2d— 1)@ + 4d + (d + 1)V + 4d
oo 3(e+ 14V +4c)?
(Xl) l36 = s
5 (2¢—1)?

(xil) I =1— 3(c+)ve+ (5e—1)Vet4 |
20 (20—1)\/c+473\/20—1\/02+4C+(C+1)\/m

Proof. For (i), let n = 5 in (2.5) and put I3 = 9 + 44/5 from Theorem 2.1(ii), then
we find that

(3 —V5) 15 — (5V3+6V5+V15) 158 + 8+ 2V5 = 0.

Solve the last equation for l%, and use l5; > 0 to complete the proof. For the proofs
of (iii), (v), (vii), (ix), and (xi), repeat the same argument as in the proof of (i).
For (i), let n = £ in (2.4) and put the value I§ from Theorem 2.8(i), then we find

that
<3+ﬁ—\/3—\/5>l’54:3+\/ﬁ+(4+x/ﬁ)m.

Hence we have the required result. The proofs of (iv), (vi), (viii), (x), (xii) are
similar to that of (ii). O

We end this section by evaluating 1% for n =5 45 136 /207 L -9 =5 -4 =1

20, and 180.

Theorem 2.13. Let ¢ and d be as in Theorem 2.7. Then we have

i) 1 = 8 —3v2+45V6
0 6-5V3—4v5+3V15’

g 6+5V3+4V/5+3V15

(i) I3 = ,
i 8+ 3v2+5v6

Gif) 14 = 8+ 3v2+5V6
5 6+5V3+4V5+3V15]

(iv) 1 _6-5V3-4/5+3V15
3 8—3v2+5v6

) 1 (2c—DVe+4+3V2c— 14/ +4e+ (c+ 1)V +4e

v 20 — s
9

3(c+1)v/c+3cve+4 —3v2c— 1\/02 +4dc+ (c+ 1)V +4e
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(i) 1 = 14— (cHDVet (et Dvetd

5

% 3\ﬁ+3\/c2+4c+(c+ 1)Ve? + 4c
(2d — VWAF 2+ 33— 1)@ + 4d + (d + )& + 4d

(vil) 14, = ,
o 3(d+ 1)\/Zi+3d\/d+4—3\/2d—1\/d2+4d+(d+ 1)Vd? + 4d
Vd+4
(viti) 14, = 11 (d+7)Vd+ (d+1)Vd+ ’
180 3\/&+3\/d2+4d+(d+ 1)Vd? + 4d
(i) 1 3\/&+3\/d2+4d+(d+ 1)Vd2 + 4d
1X) t180 = )

(d+4)\/&+(d+1)\/m—3\/d2+4d+(d+1)\/m
() M= 1t 3(d+1)Vd+ (5d — 1)V/d + 4
T (24— VAT A+ 3V2— 11/ + 4d + (d+ 1)V + &d
(x) I, = 3ﬁ+3\/c2+4c+(c+ 1)vVe? +4e
B (c+4)ﬁ—|—(c+1)\/0—1—4—3\/02—1—40—1—(c+1)\/02+4c;
(xii) 14 = —1 4 3(c+1)ve+ (be—1)ve+4 '
20 (20—1)\/0—1—4—1—3«/20—1\/02+4c+(c+ V2 +4e

Proof. For (i), let n = 20 in (2.3) and put I3, = (2+/5)%(4 ++/15)? from Theorem
2.12(i), then we deduce that

215, — 8(69 + 403 + 315 + 18V/15 ) I3, — 188 — 105v/3 — 84+/5 — 47V/15 = 0.

Using Mathematica to solve the last equation for l%m we complete the proof.
For (ii), let n = 2 in (2.5) and put the value of I} in Theorem 2.8(i) to complete

the proof. For (iii)— (xii), repeat the same argument as in the proofs of (i) or (ii). O

3. EVALUATIONS OF G(q)

In this section, we evaluate about 46 values G(—¢,) and G(gy,) including 36 new
ones. Just for editorial convenience, we evaluate G3(—gq,) and G3(g,). By taking
cube roots of them, the required values of G(—g,,) and G(g,) can easily be obtained.

We first evaluate G3(—¢qy,) and G3(g,) forn= 3,2 1 2 "1 and 6.

Theorem 3.1. We have
. -1
(i) Gg(-é]g)

T 113(V/2+3)
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3} B -1
(ii) GS(—Q%) T2 vB)
(iil) G3( Q%): —3(v2+3) 1
3(v3+V3)+ (1- V1+3v2+3V3)
—-3(v2 —V/3)

(iv) G¥(—q.) =
T3(V2-B) - (1—\/1—3f+3f)

—(1—{/1—3\f+3\f)
(v) G¥(~qs) =
T27(V2+V3) + (1—\/1—3\f+3f)
(1—\/1—3\f+3\f)
27(v2 - V8) ~ (1-V1-3v213v3)

Proof. The results follow from (1.3), Lemma 2.1(i), and Theorem 2.3. O

(vi) G(~g6) =

Theorem 3.2. Let a and b be as in Theorem 2.6. Then we have

() G¥agz) = V2,
(i) Gay) = e
a Va? +4a —ala
(i) (g = LTIV laalatd)

(iv) G3(q:1:) _ (b+ 1)@_b(b+3),

. B (2a —1)\a+4
W) ey = S Dvast (et DvaTt’
(2b—1)Vb+4
9b+1)Vb+ (Th+1)Vb+4

Proof. The proofs are clear by (1.2) and Theorem 2.6. O

1

1
6

(vi) G*(q6) =

Note that an explicit value of G(gg) in [11, Theorem 6.3.3(ii)] was given by

3
3-2V2
G(gs) = . Note also that the value of G3(q1) was
24+ 2V/14+V2+V2V/3+2V2 °
given in [8, Theorem 5.5(i)].

We next evaluate G(—¢,) and G(g,) for n = %, %, %, 2%, 135, and 15.

Theorem 3.3. We have

. 4
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—7-3v5

(i) G¥(—q) = —

(it}) G¥(~qs) = -3

T (24 VB (14 V28 12V5 )

(iv) GY(-ay) = =

B34 (24 5)2 (1+\/28—12 )
—(—1+\3/28+12 )
(v) G3(—qs) =
Y 3(64+3V5)? (1+\/28+12 )
—(—1+€’/W>
3(—6 + 3v/5 )2 (14—\/8—12 )

Proof. The results follow from (1.3), Lemma 2.1(ii), and Theorem 2.4.

(vi) GS(—Q15)

Theorem 3.4. Let ¢ and d be as in Theorem 2.7. Then we have

(i) G(gs) = 21+3¢_5\+/56¢ﬁ’

) Gay) =
(i) (a3 = (c+ 1)\/c2+? — e+ 3)’
(v) Ga.y ) = (d+ 1)@ —d(d+ 3)}
W) &) =53 132\211()7@6;1? ctd’
) ) = 9(d + 1§2\;lﬁ_+1()7dd++1;1m '

Proof. The results follow from (1.2) and Theorem 2.7.
We now evaluate G(g,) and G(—gy) for n =3, £, - and 24.

Theorem 3.5. Let a and b be as in Theorem 2.6. Then we have
) a-+ Dva?+ 4a —ala+ 3
() Glay) = TV ez et 3,

) VB4 b2+ 4b+ (b+ VB + 2
(i) G3(g ) =

)V b+ 1)VE+ 4+ 2\/b2 +4b+ (b+ 1)Vb2 + 4b ’
(iii) G%(qz)
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—(2a — 1)va+ 4+ 3v2a — 1\/a2 +4a+ (a+ 1)vVa® + 4a
9(a+1)va+ (1la — 1)v/a + 4 + 6v/2a — 1\/a2 +4a+ (a+1)Va? +4a
N 5b+2 — 3vB2 + 4b
(iv) G*(q2s) = :
A(b+ 4+ 3VB2 + 4b)
Proof. The results follow from (1.2) and Theorem 2.10. O

Theorem 3.6. Let ¢ and d be as in Theorem 2.7. Then we have
() G¥(—qy)
—(a+1)va—ava+4++2a—1y/a?2 +4a+ (a+1)Va? +4a
(a+1)va+ (3a—1)vVa+4+2y2a — 1\/a2 +4a+ (a+1)Va? +4a
. 3 _
(i) G¥(~q1 )
—Vb — \/b2 +4b+ (b + 1)Vb2 + 4b
(b4 5)VE+ (b + Vo + 4 —2,/82 + db+ (b+ 1)V5 + 4b
(i) G¥(gs)
—(2a —1)v/a —3v2a — 1\/a2 +4a+ (a+1)Va? +4a
9(a+1)va+ (1la—1)va+4 — 6v/2a — 1\/a2 +4a+ (a+ 1)Va? + 4a
(iv) G*(—gaa)
~(b+4)Vd— b+ 1)Vb+4+ 3\/b2 +4b+ (b+1)vb? +4b
(b+13)Vh+ (b+1)Vb+ 4+ 6\/b2 +4b+ (b + 1)V + 4b
Proof. The results follow from (1.3) and Theorem 2.11. O

H

We end this section by evaluating G3(g,) and G3(—¢,) for n = %, 14—5, %, %, 14—5,

f ) -
300 27> 60 1080 T35 50 and n = 60.

Theorem 3.7. Let ¢ and d be as in Theorem 2.7. Then we have
31 — 815
() G¥gu0) = vio
3’ 4(-1+3V5+2V15)
i) G¥as) 14+3v2-v5+V30
5 ) = )
20 114 6v2+15v3+ V5 (134 3vV3 +2v6)
9 +4+5
(i) G*(q.1) = R
57 4(21 -5+ 6V15)
(V) g2 ) ~1+3v2 -5+ V30
1 — ’
807 114+ 6v2+15v/3+v/5(13 —3v3 +26)
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(c+1)Ve?+4c—c(ec+ 3)
8¢ ’

—vec+ \/62+4c+(c+1)\/02+4c

(c+5)ye+ (e+ 1)\/c—|—4—|—2\/02 +4c+ (e + 1)Ve? +4c7
(d+1)vVd*+4d — d(d + 3)

8d ’

—Vd+ \/d2 +4d + (d+1)Vd? + 4d
(d+ W+ (d+ 1)V +2\/@ +4d+ (d+ D)WWP + dd

5d + 2 — 3v/d% + 4b
(d+4+3Vd2+4d)’

(v) G*azg) =

(vi) G¥(qs ) =

108

(vil) G¥(q.1 ) =

(viil) G3(q1 ) =

540

(ix) G*(ge0) = 1
(x) G3(qus)
—(2d — VVAFA+3v2d—1\/d? + 4d + (d + )V + 4d

O(d + V)V + (11d ~ ))V/d+ 3+ 6V2d— 1\/d? + 4d + (d + 1)V + 4d
_ 2
(xi) G3(q1 _ 5¢c+ 2 — 3vc? + 4c

B 4c+44+3V2 +4c)’
(xii) G*(qz)

—(2¢c—1)ve+4+3v2c — 1\/@2 +4c+ (c+ 1)V + 4e
9(c+1)ve+ (1le—1)Ve+ 4+ 6y/2c — 1\/02 +de+ (c+ 1)V +4e

Proof. The results are immediate from (1.2) and Theorem 2.12.

Theorem 3.8. Let ¢ and d be as in Theorem 2.7. Then we have

(i) G¥(—qm) = —6+5v3+4v5—3V15
1 = 30— 0v2—5v3 —4v5 + 15v/6 1 3715
(i) CHqs) = ~16 +9v2 +8v3 - 7v/6
T T T 9V 43— 35 + TV6 + 6v15
(ill) G3(—qa) = —6-5v3—4v5-3V15
T T 301 9v2 + 5v3 + 4v5 1 15v6 1 3V15
() G(ay) = - V2SI TS

W T4 9v2—4v3+3v5 + 7v6 + 6v/15
(v) G¥(=qa0)

—(c+1)y/e—ceve+4+ 2 — 1\/02 +4c+ (c+ 1)V + 4e
(c+1)ve+ Be—1)Ve+4+2y2c— 1\/02 +4c+ (c+ 1)V + 4e 7
(vi) G*(~qs)

108
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—\ﬁ—\/c2—|—4c—|—(c—|—1)\/62—|—4c

(c+5)y/c+ (c+1)\/c—|—4—2\/02 +4c+ (c+ 1)Ve? —1—407
(vil) GHq.1 )

—(d+ DVd - dVAF A+ VIT—T\/d + 4d + (d+ )VP +4d
(d+ D)W+ (3d—1)VAF+220— 1)/ +4d+ (d+ )VP +4d
(viil) G*(—q1)

—\/&—\/d2+4d+(d+1)\/m
(d+5)Vd+ (d+ DIFA -2/ + dd+ (d+ )BT dd
ix) G3(—
( )—(d(+i6)0\>/c?—(d+1)¢m+3\/d2+4d+(d+1)\/m
(d+13)\/&+(d+1)\/cm+6\/d2+4d+(d+1)\/m’
(x) G*(—q1)

—(2d—1)\/d+4—3\/2d—1\/d2+4d+(d+ 1)Vd? + 4d
9(d+ 1)V + (11d = )W+ — 6v2d = 1/ + dd + (d+ )P + 4d
(xi) G*(—q12)

(e Ve (c+ VT d+3y/ +det (e + VP T e
(c+13)/e+ (c+ DVeFa+6y/ +dc+ (c+ DV@ +dc
(xii) G*(—q3)

—(2c—1)m—3m\/c2+4c+(c+ Ve + 4c

9(c+ 1)ﬁ+(11c—1)\/c+4—6\/2c—1\/c2+4c+(c+ 1)\/624—740.

Proof. The results follow directly from (1.3) and Theorem 2.13. O
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