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A NEW GENERALIZED CUBIC FUNCTIONAL EQUATION AND

ITS STABILITY PROBLEMS

Heejeong Koh

Abstract. The purpose of this paper is to introduce a new type of a cubic func-
tional equation and then investigate its stability problems in a convex modular space
with a generalized △a-condition.

1. Introduction

The concept of stability problem of a functional equation was first posed by

Ulam [20] concerning the stability of group homomorphisms at the Mathematics

Club of the University of Wisconsin in 1940. In the next year, Hyers [6] gave a

partial answer to the question of Ulam for additive groups under the assumption

that groups are Banach spaces. Hyers’s method used in [6], which is often called

the direct method, has been applied for studying the stability of various functional

equations. The very first author who generalized Hyers’ theorem to the case of

unbounded control functions was Aoki [1]. Rassias [17] succeeded in extending

the result of Hyers’ theorem by weakening the condition for the Cauchy difference.

Rassias’ paper [17] has provided a lot of influence in the development of Hyers-Ulam

stability or Hyers-Ulam-Rassias stability of functional equations.

The second most popular technique of proving the stability of functional equations

is the fixed point methods. It was used for the first time in 1991 by Baker [2]

who applied a variant of Banach’s fixed point theorem to obtain the stability of

a functional equation in a single variable. By using the fixed point method the

stability problems of several functional equations over various normed spaces have

been extensively investigated by a number of authors (see [4, 3, 14]). Most authors
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follow Radu’s approach [16] and make use of a theorem of Margolis and Diaz [11].

In particular, Jun and Kim [8] considered the following cubic functional equation

(1.1) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

since it should be easy to see that a function f(x) = cx3 is a solution of the equation

(1.1). Since then the stability of cubic functional equations has been investigated by

a number of authors (see [9, 5, 15] for details). In particular, Najati [15] investigated

the following generalized cubic functional equation

(1.2) f(sx+ y) + f(sx− y) = sf(x+ y) + sf(x− y) + 2(s3 − s)f(x)

for a positive integer s ≥ 2.

As we notice there are various definitions for the stability of the cubic functional

equations, in this paper, we will introduce a new type of a generalized cubic func-

tional equation as follows :

(1.3) f(ax− by)− f(bx− ay) + ab(a− b)f(x+ y) = (a+ b)2(a− b)[f(x) + f(y)]

where a and b are integers with a ̸= b and a, b ̸= 0,±1 .

In this paper, we will obtain a general solution of the generalized cubic functional

equation (1.3) and then investigate the stability problems by using both the direct

method and the fixed point method for the given generalized cubic functional equa-

tion. To obtain the stability problems, we will introduce a convex modular space

and some basic properties concerning the convex modular.

Definition 1.1. Let X be a linear space over a field K (R or C) . A generalized

functional ρ : X → [0, ∞] is called a modular if for any x , y ∈ X ,

(M1) ρ(x) = 0 if and only if x = 0 .

(M2) ρ(αx) = ρ(x) for all scalar α with |α| = 1 .

(M3) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for all scalars α , β ≥ 0 with α+ β = 1 .

If (M3) is replaced by

(M4) ρ(αx + βy) ≤ αρ(x) + βρ(y) for all scalars α , β ≥ 0 with α + β = 1 then

the functional ρ is said to be a convex modular.

A modular ρ defines the following vector space:

Xρ := {x ∈ X | ρ(λx) → 0 as λ → 0}

and we call Xρ a modular space. A modular ρ is said to satisfy the ∆2-condition

if there exists k > 0 such that ρ(2x) ≤ kρ(x) for all x ∈ Xρ . We call the constant
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k a ∆2-constant related to ∆2-condition. Now, let {xn} be a sequence in Xρ . The

sequence {xn} is ρ-convergent to a point x ∈ Xρ if ρ(xn − x) → 0 as n → ∞ .

The sequence {xn} is called ρ-Cauchy if for any ε > 0 one has ρ(xn − xm) < ε for

sufficiently large n, m ∈ N . Also, Xρ is called ρ-complete if any ρ-Cauchy sequence is

ρ-convergent to a point in Xρ . The modular theory on linear spaces and the related

modular theory on linear spaces have been established by Nakano [13]. Kim and

Shin [10] investigated the stability problems of additive and quadratic functional

equations in modular spaces.

2. A Solution for a Generalized Cubic Functional Equation

In this section let X and Y be real vector spaces and we will investigate the

general solution of the functional equation (1.3). Before we proceed, we would

like to introduce some basic definitions concerning 3-additive symmetric mappings

and key concepts. More general version of n-additive symmetric mappings are

also found in [19] and [21]. A mapping A : X → Y is said to be additive if

A(x + y) = A(x) + A(y) for all x , y ∈ X . A mapping A3 : X3 → Y is called

3-additive if it is additive in each variable. A mapping A3 is said to be symmetric

if A3(x1 , x2 , x3) = A3(xσ(1) , xσ(2) , xσ(3)) for every permutation {σ(1) , σ(2) , σ(3)}
of {1 , 2 , 3} . If A3(x1 , x2 , x3) is an 3-additive symmetric mapping, then A3(x) will

denote the diagonal A3(x , x , x) and A3(rx) = r3A3(x) for all x ∈ X and all r ∈ Q .

A3(x) will be called a monomial function of degree 3 (assuming A3 ̸≡ 0). Further-

more the resulting function after substitution x1 = xs = x and xs+1 = · · · = x3 = y

in A3(x1 , x2 , x3) will be denoted by As,3−s(x , y) .

Theorem 2.1. A mapping f : X → Y is a solution of the functional equation (1.3)

if and only if f is of the form f(x) = A3(x) for all x ∈ X , where A3(x) is the

diagonal of the 3-additive symmetric mapping A3 : X
3 → Y .

Proof. Suppose f satisfies the functional equation (1.3) . On letting x = y = 0 in

the equation(1.3), we have

(a− b)(2a2 + 3ab+ 2b2)f(0) = 0 .

Hence f(0) = 0 . On putting y = 0 in the equation (1.3), we get

(2.1) f(ax)− f(bx) = (a3 − b3)f(x)
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for all x ∈ X . Also, on letting x = 0 in the equation (1.3), we get

f(−by)− f(−ay) + ab(a− b)f(−y) = (a+ b)2(a− b)f(y)

for all y ∈ X . Replacing y by x in the previous equation and using the equation

(2.1), we have

−(a3 − b3)f(−x) = (a3 − b3)f(x) .

That is, f(x) = −f(−x) , for all x ∈ X . By Theorems 3.5 and 3.6 in [21], f is a

generalized polynomial function of degree at most 3, that is, f is of the form

(2.2) f(x) = A3(x) +A2(x) +A1(x) +A0(x)

for all x ∈ X , where A0(x) = A0 is an arbitrary element of Y and Ai(x) is the

diagonal of the i-additive symmetric mapping Ai : Xi → Y for i = 1, 2, 3 . By

f(0) = 0 and f(−x) = −f(x) for all x ∈ X , we get A2(x) + A0(x) = 0 . Hence we

have

f(x) = A3(x) +A1(x) ,

for all x ∈ X . The equation (2.1) and An(rx) = rnAn(x) (n = 1 or 3) for all x ∈ X

and all r ∈ Q imply that

a3A3(x) + aA1(x)− b3A3(x)− bA1(x) = f(ax)− f(bx)

= a3f(x)− b3f(x) = a3(A3(x) +A1(x))− b3(A3(x) +A1(x))

for all x ∈ X . Hence we may conclude that A1(x) = 0 . Thus f(x) = A3(x) for all

x ∈ X , as desired.

Conversely, assume that f(x) = A3(x) for all x ∈ X , where A3(x) is the diagonal

of a 3-additive symmetric mapping A3 : X
3 → Y . Note that

A3(qx+ ry) = q3A3(x) + 3q2rA2,1(x, y) + 3q1r2A1,2(x, y) + r3A3(y)

where q , r ∈ Q . Hence we have

A3(ax− by)−A3(bx− ay) + ab(a− b)A3(x+ y)

= (a+ b)2(a− b)[A3(x) +A3(y)]

for all x, y ∈ X . Thus we may conclude that f satisfies the equation (1.3). �

Now, we call the mapping f a generalized cubic mapping if f satisfies the equation

(1.3).
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3. The Direct Method Approach for the Stability Problem

Throughout this section let V be a linear space and Xρ a ρ-complete convex

modular space unless otherwise stated. Now, we will state some basic properties to

be used in this section.

Remark 3.1. (1) ρ(αx) ≤ αρ(x) for all 0 ≤ α ≤ 1 .

(2) ρ(
∑n

j=1 αjxj) ≤
∑n

j=1 αjρ(xj) , where
∑n

j=1 αj ≤ 1 for all αj ≥ 0 .

Lemma 3.2. Let X be a linear space over a field K (R or C) . Suppose X satisfies

the △2-condition with △2-constant k . Then for each a ∈ K with |a| > 1 there exists

a constant ka such that ρ(ax) ≤ kaρ(x) , for all x ∈ X .

Proof. Since |a| > 1 then there exists n ∈ N such that 2n−1 < |a| ≤ 2n . Hence

ρ(ax) = ρ(
a

|a|
|a|x) = ρ(|a|x) = ρ(

|a|
2n

2nx)

≤ |a|
2n

ρ(2nx) ≤ |a|
2n

knρ(x) = kaρ(x)

where ka = |a|
2nk

n . �

Definition 3.3. Let a ≥ 2 be an integer number. A modular ρ is said to satisfy the

∆a-condition if there exists ka > 0 such that ρ(ax) ≤ kaρ(x) for all x ∈ Xρ . We call

the constant ka a ∆a-constant related to ∆a-condition and a .

We note that it is easy to show that the △a-constant ka is greater than equal to

a , for any integer a ≥ 2 . For a given function f : V → Xρ and a fixed integer a ≥ 2

let

Daf(x, y) := f(ax− y)− f(x− ay)+ a(a− 1)f(x+ y)− (a+1)2(a− 1)[f(x)+ f(y)]

for all x , y ∈ V .

Theorem 3.4. Let a ≥ 2 be a integer number. Suppose Xρ satisfies the △a-condition

with △a-constant ka . If there exists a function ϕ : V 2 → [0, ∞) for which a mapping

f : V → Xρ satisfy

(3.1) ρ(Daf(x, y)) ≤ ϕ(x, y)

(3.2) lim
n→∞

k3na ϕ
( x

an
,
y

an

)
= 0 and

∞∑
j=1

(k4a
a

)j
ϕ
( x

aj
,
y

aj

)
< ∞
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for all x, y ∈ V, then there exists a unique generalized cubic mapping C : V → Xρ

defined by C(x) = ρ− limn→∞ a3nf
(

x
an

)
and

(3.3) ρ
(
f(x)− C(x)

)
≤ 1

a k2a

∞∑
j=1

(k4a
a

)j
ϕ
( x

aj
, 0

)
for all x ∈ V.

Proof. On letting x = y = 0 in the inequality (3.1), we have

ρ
(
(2a3 + a2 − a− 2)f(0)

)
≤ ϕ(0, 0) .

Hence f(0) = 0 because of the equation (3.2). On taking x = x
a and y = 0 in the

inequality (3.1), we get

(3.4) ρ
(
f(x)− a3f

(x
a

))
≤ ϕ

(x
a
, 0
)

for all x ∈ V. By using the property of the △a-condition and the Remark 3.1, we

have

ρ
(
f(x)− a3nf

( x

an

))
= ρ

( n∑
j=1

1

aj

(
a4j−3f

( x

aj−1

)
− a4jf

( x

aj

)))
≤ 1

k3a

n∑
j=1

(k4a
a

)j
ϕ
( x

aj
, 0

)
for any positive integer n and all x ∈ V. Also, for all positive integers n and m with

n ≥ m, we get

ρ
(
a3nf

( x

an

)
− a3mf

( x

am

))
≤ k3ma ρ

(
a3(n−m)f

( x

an

)
− f

( x

am

))
≤ 1

k3a
k3ma

n−m∑
j=1

(k4a
a

)j
ϕ
( x

am+j
, 0

)
≤ 1

k3a

( a

ka

)m
n∑

j=m+1

(k4a
a

)j
ϕ
( x

aj
, 0

)
for all x ∈ V. The last part of the above inequalities tends to zero as m → ∞ . Hence

the sequence {a3nf
(

x
an

)
} is a ρ-Cauchy sequence in the ρ-complete convex modular

space. This means that the sequence {a3nf
(

x
an

)
} is ρ-convergent in Xρ . Hence we

may define a mapping C : V → Xρ by

C(x) = lim
n→∞

a3nf
( x

an

)
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for all x ∈ V. In fact, this means that

(3.5) lim
n→∞

ρ
(
a3nf

( x

an

)
− C(x)

)
= 0

for all x ∈ V. By using △a-condition with △a-constant ka, we have

ρ(f(x)− C(x)) = ρ
(
f(x)− a3nf

( x

an

)
+ a3nf

( x

an

)
− C(x)

)
≤ ρ

(1
a

(
af(x)− a3n+1f

( x

an

))
+

1

a

(
a3n+1f

( x

an

)
− aC(x)

))
≤ ka

a
ρ
(
f(x)− a3nf

( x

an

))
+

ka
a

ρ
(
a3nf

( x

an

)
−Q(x)

)
≤ ka

a

1

k3a

n∑
j=1

(k4a
a

)j
ϕ
( x

aj
, 0

)
+

ka
a

ρ
(
a3nf

( x

an

)
− C(x)

)
for all x ∈ V. As n → ∞ , the last part of the above inequalities implies that

ρ(f(x)− C(x)) ≤ 1

a k2a

∞∑
j=1

(k4a
a

)j
ϕ
( x

aj
, 0

)
for all x ∈ V, that is, this implies the inequality (3.3). Next, we will show the

mapping C is a generalized cubic mapping, that is, it satisfies the equality (1.3)

when b = 1 . We note that

ρ
(
a3nDaf

( x

an
,
y

an

))
≤ k3na ϕ

( x

an
,
y

an

)
→ 0

for all x, y ∈ V, as n → ∞ .

By an integer number a ≥ 2 and the Remark 3.1, we have

ρ(DaC(x, y))

= ρ
(
DaC(x, y)− a3nDaf

( x

an
,
y

an

)
+ a3nDaf

( x

an
,
y

an

))
≤ k3a

a3

[
ρ
(
C(ax− y)− a3nf

(ax− y

an

))
− ρ

(
C(x− ay)− a3nf

(x− ay

an

))
+
ka(ka − 1)2

2
ρ
(
C(x+ y)− a3nf

(x+ y

an

))
−(k2a − 1)2ρ

(
C(x)− a3nf

( x

an

))
− (k2a − 1)2ρ

(
C(y)− a3nf

( y

an

))
+ρ

(
a3nDaf

( x

an
,
y

an

)) ]
for all x, y ∈ V. The note and the equation (3.5) imply that ρ(DaC(x, y)) = 0 for all

x, y ∈ V. Hence the mapping C is a generalized cubic mapping, as desired. Finally,

we have to show that the mapping C is unique. To show the uniqueness, we may

assume that there is another generalized cubic mapping C̃ : V → Xρ satisfies the

inequality (3.3). We note that when b = 1 , the equation (2.1) implies that f(ax) =
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a3f(x) for all x ∈ X . Hence we have C(x) = a3nC( x
an ) and C̃(x) = a3nC̃( x

an ) for all

x ∈ V. Hence we get

ρ(C(x)− C̃(x)) = ρ
(
a3nC(

x

an
)− a3nC̃(

x

an
)
)

≤ k3na
a

[
ρ
(
C
( x

an

)
− f

( x

an

)
+ C̃

( x

an

)
− f

( x

an

))]
≤ 2

a2 k2a

( a

ka

)n
∞∑

j=n+1

(k4a
a

)j
ϕ
( x

aj
, 0

)
for all x ∈ V. On taking the limit as n → ∞ , the uniqueness is proved. �

Corollary 3.5. Let a ≥ 2 be a integer number and θ and p > loga
k4a
a be real numbers.

Suppose V is a normed space with norm || · || and Xρ satisfies the △a-condition with

△a-constant ka . If f : V → Xρ such that

(3.6) ρ(Daf(x, y)) ≤ θ(||x||p + ||y||p)

for all x, y ∈ V, then there exists a unique generalized cubic mapping C : V → Xρ

such that

(3.7) ρ
(
f(x)− C(x)

)
≤ θ k2a

a (ap+1 − k4a)
||x||p

for all x ∈ V.

Proof. On taking ϕ(x, y) = θ(||x||p + ||y||p) in the Theorem 3.4, we know that

the inequality (3.6) holds. Also, it satisfies the inequalities (3.2). According to

Theorem 3.4, we have the result as in the inequality (3.7). �

4. The Fixed Point Method Approach for the Stability Problem

In this section we shall study the generalized Hyers-Ulam stability for the gen-

eralized cubic functional equation (1.3) in a modular space by using the fixed point

method. Now, we will state the theorem, the alternative of fixed point in a general-

ized metric space.

Definition 4.1. Let X be a set. A function d : X × X → [0, ∞] is called a

generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y ;

(2) d(x, y) = d(y, x) for all x, y ∈ X ;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .
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Note that the only substantial difference of the generalized metric from the metric

is that the range of generalized metric includes the infinity. Now, we will introduce

one of fundamental results of fixed point theory. For the proof, refer to [11].

Theorem 4.2 ([11, 18, The alternative of fixed point]). Suppose that we are given a

complete generalized metric space (Ω, d) and a strictly contractive mapping T : X →
X with Lipschitz constant 0 < L < 1 . Then for each given x ∈ X , either

d(Tnx, Tn+1x) = ∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

(1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;

(2) The sequence {Tnx} is convergent to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of T in the set

Y = {y ∈ X | d(Tn0x, y) < ∞} ;

(4) d(y, y∗) ≤ 1
1−L d(y, Ty) for all y ∈ Y .

Theorem 4.3. Let a ≥ 2 be a integer number. Suppose Xρ satisfies the △a-condition

with △a-constant ka and ϕ : V 2 → [0,∞) be a function such that there exists an

constant 0 < L < 1 with

(4.1) ϕ(
x

a
,
y

a
) ≤ L

k3a
ϕ(x, y)

for all x, y ∈ V. If f : V → Xρ is a mapping satisfying

(4.2) ρ(Daf(x, y)) ≤ ϕ(x, y)

for all x, y ∈ V, then there exists a unique generalized cubic mapping C : V → Xρ

defined by C(x) = ρ− limn→∞ a3nf
(

x
an

)
and

(4.3) ρ
(
f(x)− C(x)

)
≤ L

k3a(1− L)
ϕ(x, 0)

for all x ∈ V.

Proof. First of all, we note that the inequality (4.1) implies that ϕ(0, 0) = 0 . We

put x = y = 0 in the equation (4.2) to obtain f(0) = 0 . Substituting x = x
a and

y = 0 in the inequality (4.2) and using the inequality (4.1), we have

(4.4) ρ
(
f(x)− a3f

(x
a

))
≤ ϕ

(x
a
, 0
)
≤ L

k3a
ϕ(x, 0)

for all x ∈ V.
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Now we define a set S as

S := {g : V → Xρ with g(0) = 0}

and then a mapping d on S × S by

d(g, h) = inf{µ ∈ [0, ∞] : ρ(g(x)− h(x)) ≤ µϕ(x, 0),∀x ∈ V }

where inf ∅ = ∞ as a definition. Then (S, d) is a complete generalized metric space;

see Lemma 2.1 in [12]. Now we also define a linear mapping T : S → S by

Tg(x) := a3g
(x
a

)
for all x ∈ V . Let g, h ∈ S be given such that d(g, h) ≤ µ. Then we have

ρ (g(x)− h(x)) ≤ µϕ(x, 0)

for all x ∈ V. Hence we get

ρ((Tg)(x)− (Th)(x)) = ρ
(
a3g

(x
a

)
− a3h

(x
a

))
≤ k3aµϕ

(x
a
, 0

)
≤ Lµϕ(x, 0)

for all x ∈ V. Hence we have the fact that d(g, h) ≤ µ implies d(Tg, Th) ≤ Lµ to

obtain

d(Tg, Th) ≤ Ld(g, h)

for all g, h ∈ S . Thus T is strictly contractive because L is a constant with 0 < L <

1 . Now from the observation of the inequality (4.4) we have

(4.5) d(f, Tf) ≤ L

k3a
< ∞ .

According to the (2) of the Theorem 4.2, there exists a function C : V → Xρ which

is a fixed point of T such that ρ(Tnf, C) → 0 as n → ∞ . By using mathematical

induction, we can show that

Tnf(x) := a3nf
( x

an

)
for all n ∈ N . Since d(Tnf, C) → 0 ad n → ∞ , for each fixed x ∈ V , we have

(4.6) lim
n→∞

ρ
(
a3nf

( x

an

)
− C(x)

)
= 0 .

Hence we may conclude that

C(x) = ρ− lim
n→∞

a3nf
( x

an

)
for all x ∈ V. By the (4) of the Theorem 4.2 and the inequality (4.5), we get

(4.7) d(f, C) ≤ 1

1− L
d(Tf, f) ≤ L

k3a(1− L)
.
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This means that the inequality (4.3) holds for all x ∈ V. Also, the uniqueness of

the mapping C follows from the (3) of the Theorem 4.2. We also knew that the

mapping C was a generalized cubic mapping as in the proof of Theorem 3.4 such as

ρ(DaC(x, y)) = 0 for all x, y ∈ V. �

Corollary 4.4. Let a ≥ 2 be a integer number and θ and p > loga
k3a
a be real numbers.

Suppose V is a normed space with norm || · || and Xρ satisfies the △a-condition with

△a-constant ka . If f : V → Xρ such that

(4.8) ρ(Daf(x, y)) ≤ θ(||x||p + ||y||p)

for all x, y ∈ V, then there exists a unique generalized cubic mapping C : V → Xρ

such that

(4.9) ρ
(
f(x)− C(x)

)
≤ Lθ

k3a(1− L)
||x||p

for all x ∈ V.

Proof. On taking ϕ(x, y) = θ(||x||p + ||y||p) in the Theorem 4.3, we know that the

inequality (4.8) holds. Now, if we take L = k3a
ap , then the assumption p > loga

k3a
a

implies that 0 < L < 1 . Also, it satisfies the inequalities (4.1). According to

Theorem 4.3, we have the result as in the inequality (4.9). �
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