DOI QR코드

DOI QR Code

A Study on the Development of Bubble Reduction System through Experimentation and Analysis

실험과 해석을 통한 기포저감 시스템의 개발에 대한 연구

  • Sim, Woo-Bin (Mechanical Engineering, Graduate School, Kongju National University) ;
  • Yoo, Young-Cheol (Mechanical Engineering, Graduate School, Kongju National University) ;
  • Park, Sung-Young (Division of Mechanical & Automotive Engineering, Kongju National University)
  • 심우빈 (공주대학교 일반대학원 기계공학과) ;
  • 유영철 (공주대학교 일반대학원 기계공학과) ;
  • 박성영 (공주대학교 기계자동차공학부)
  • Received : 2021.01.28
  • Accepted : 2021.03.20
  • Published : 2021.03.28

Abstract

This study relates to a device that increases efficiency by reducing air bubbles in a hydraulic system used in hydraulic machinery. The reverse design and product production of the bubble reduction device, which is a commercial product overseas, was carried out. Overseas commercial products were set as the base model, a rotary rotor and an inclined rotor were added to increase the surface area of the fluid, and an annular equal distribution part with a slot in the lower part was additionally applied to distribute the fluid evenly. In addition, internal flow trends were analyzed and a system that evenly distributes the linear flow of fluid was selected as the first improvement model. Based on the first improvement model, a case where the angle of the inclined rotor is 45° was selected as the second improvement model. Based on this, as a result of setting the exit width of the annular equally distributed part as a variable, the bubble reduction efficiency was highest when the lower slot diameter of the annular part was 10mm. Finally, the system in which the average cross-sectional flow velocity decreased by 147% compared to the Base Model was derived as the final improved model.

본 연구는 유압기계에 사용되는 유압 시스템에서 기포를 저감시킴으로써 효율을 증대시키는 장치에 관한 것이다. 해외 상용품인 기포저감장치의 역설계를 진행하였고, 실험에 용이하게 제품들을 제작하였다. 작동성 실험을 위해 총 3종류의 시스템을 구성하였다. 해외 상용품을 Base Model로 설정하였고, 하강하는 유체의 표면적을 넓히기 위해 회전형 Rotator와 경사형 Rotator를 추가하였으며, 유체를 균등하게 분배해주기 위해 하단부에 슬롯이 파진 환형 균등분배 파트를 추가 적용하였다. 또한 내부 유동경향을 분석하였으며, 유체의 직선적인 흐름을 균등하게 분배시키는 시스템을 1차 개선 모델로 선정하였고, 설계 변수를 적용하여 추가 유동해석을 진행하였다. 1차 개선 모델을 바탕으로 경사형 Rotator의 각도가 45°일 때를 2차 개선 모델로 선정하였다. 이를 기준으로 환형 균등분배 파트의 출구너비를 변수로 설정한 결과, 환형 파트의 하단부 슬롯 직경이 10mm일 때 기포저감 효율이 가장 높았다. 최종적으로 Base Model 대비 평균 단면 유속이 147% 감소한 시스템을 최종 개선 모델로 도출하였다.

Keywords

References

  1. S. E. Park & H. W. Roh. (2004). Study on the Reduction Method of Occurred Cavitation in a System. The KSFM Journal of Fluid Machinery, 7(1), 45-50. DOI : 10.5293/kfma.2004.7.1.045
  2. I. K. Lee, J. H. Chang, K. Y. Kim & H. C. Choi. (2019). Effect of Gas Void Fraction on the Flow Structure and Heat Transfer Characteristics in a Turbulent Bubbly Pipe Flow. The Korean Society of Mechanical Engineers, 390-390.
  3. G. H. Son & S. R. Lee. (1999). Numerical Simulation on Rising Bubble Behaviors in Water. Transactions of the Korean Society of Mechanical Engineers - B, 23(12), 1606-1613. DOI : 10.22634/KSME-B.1999.23.12.1606
  4. M. C. Potter, D. C. Wiggert & B. Ramadan. (2015). Mechanics of Fluid, Seoul : HANTEEMEDIA.
  5. J. L. Johnson. (2002). INTRODUCTION TO FLUID POWER, Seoul : Scitechmedia
  6. J. H. Park, H. S. Lee, S. N. Yun & Y. B. Ham. (2016). A Study on Algorithm for Optimal Design of Bubble Elimination Module of Hydraulic Systems. The Korea Fluid Power Systems Society, 13-14.
  7. H. S. Mun, Y. C. Yoo & S. Y. Park. (2020). Numerical Study on the Flow Characteristics of Bubble Particles in Bubble Reduction Device. Korea Academy Industrial Cooperation Society, 21(10), 144-149. DOI : 10.5762/KAIS.2020.21.10.144
  8. CD-Adapco, "Star-CCM+ ver. 13.04 User Guide", 2018
  9. H. H. Park, Y. E. Yoo & S. H. Chang. (2015). Magnetic Capture of Particles in Rounded Pinch-Off Channel for Bubble Reduction. The Korean Society of Manufacturing Technology Engineers, 56-56.
  10. W. J. Lee, J. H. Lee, N. Hur & I. S. Yoon. (2015). Cavitation Analysis in a Centrifugal Pump Using VOF Method. Journal of computational fluids engineering. 20(4), 1-6. DOI : 10.6112/kscfe.2015.20.4.001
  11. J. K. Yeom & H. S. Ha, (2013). Design Sensitivity Estimation of Injector Nozzle Hole Considering Cavitation. Transactions of the Korean Society of Mechanical Engineers - A, 37(11), 1361-1369. DOI : 10.3795/KSME-A.2013.37.11.1361
  12. T. A. Kim, M. G. Lee & S. H. Han, (2016). Cavitation Visualization Test for Shape Optimization of Bottom Plug in Reversing Valve. Transactions of the Korean Society of Mechanical Engineers - A, 40(11), 913-918. DOI : 10.3795/ksme-a.2016.40.11.913
  13. C. H, Ryu, J. S. Kim, D. H. Park & Y. G. Jung, (2012). Study on the Behaivor of Bubbles in the Separators. Transactions of the Korean hydrogen and new energy society, 23(5), 538-544. DOI : 10.7316/KHNES.2012.23.5.538
  14. M. G. Lee, C. S. Lim & S. H. Han. (2015). Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction. Transactions of the Korean Society of Mechanical Engineers - A, 39(11), 1123-1129. DOI : 10.3795/KSME-A.2015.39.11.1123
  15. J. W. Kim & D. j. Kim. (2015). Numerical simulation of turbulent bubbly flows in a vertical pipe using two-fluid models. The Korean Society of Mechanical Engineers, 206-208.
  16. H. S. Lee, M. h. Choi. (2019). Review of high vibration of multistage orifice piping by cavitation. Korean Society for Fluid Machinery. 214-217.