DOI QR코드

DOI QR Code

직교배열실험을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 민감도해석과 근사모델 비교연구

A Comparative Study on Approximate Models and Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Orthogonal Array Experiment

  • 김훈관 (목포대학교 조선해양공학과) ;
  • 송창용 (목포대학교 조선해양공학과)
  • Kim, Hun-Gwan (Dept. of Naval Architecture & Ocean Engineering, Mokpo National University) ;
  • Song, Chang Yong (Dept. of Naval Architecture & Ocean Engineering, Mokpo National University)
  • 투고 : 2021.01.18
  • 심사 : 2021.03.20
  • 발행 : 2021.03.28

초록

본 연구에서는 해양플랜트의 플로트오버 설치 작업을 위해 개발된 능동형 갑판지지 프레임(Deck support frame, DSF)의 구조설계에 대해 직교배열실험 방법을 이용한 민감도해석과 다양한 근사모델의 적용에 따른 설계공간의 근사화 특성에 관한 비교연구를 수행하였다. 본 연구의 목적은 효율적인 최적설계안 탐색과 높은 정확도의 근사모델을 생성할 수 있는 직교배열실험 기반의 설계 방법론을 제안하는 것이다. 설계인자는 주요 구조부재의 두께 치수를 적용하였고, 응답함수는 중량과 강도성능을 선정하였다. 직교배열실험을 이용하여 설계인자 별 응답함수에 대해 정량적인 영향도가 분석되었고, 최소중량설계를 실현할 수 있는 최상 설계조건이 탐색되었다. 직교배열실험 결과로부터 반응표면 모델, 크리깅 모델, 체비쇼프 직교 다항식 모델, 그리고 방사기저함수 신경망 모델과 같은 다양한 근사모델이 생성되었다. 근사모델의 결과를 통해 직교배열실험 결과의 타당성을 검증하였으며, 능동형 DSF의 설계공간에 대해 방사기저함수 신경망 모델이 가장 높은 정확도로 근사화할 수 있는 것으로 나타났다.

The paper deals with comparative study for characteristics of approximation of design space according to various approximate models and sensitivity analysis using orthogonal array experiments in structure design of active type DSF which was developed for float-over installation of offshore plant. This study aims to propose the orthogonal array experiments based design methodology which is able to efficiently explore an optimum design case and to generate the accurate approximate model. Thickness sizes of main structure member were applied to the design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experiment. Best design case was also identified to improve the structure design with weight minimization. From the orthogonal array experiment results, various approximate models such as response surface model, Kriging model, Chebyshev orthogonal polynomial model, and radial basis function based neural network model were generated. The experiment results from orthogonal array method were validated by the approximate modeling results. It was found that the radial basis function based neural network model among the approximate models was able to approximate the design space of the active type DSF with the highest accuracy.

키워드

참고문헌

  1. C. Y. Song. (2020). Reliability Analysis for Structure Design of Automatic Ocean Salt Collector Using Sampling Method of Monte Carlo Simulation. Journal of Ocean Engineering and Technology, 34(5), 316-324. DOI : 10.26748/KSOE.2020.054
  2. C. Y. Song, J. Lee & J. M. Choung. (2011). Reliability-based Design Optimization of an FPSO Riser Support Using Moving Least Squares Response Surface Meta-models. Ocean Engineering, 38(1), 304-318. DOI : 10.1016/j.oceaneng.2010.11.001
  3. C. Y. Song, D. J. Lee, J. S. Lee, E. M. Kim & B. Y. Choi. (2020). Evaluation of Structural Design Enhancement and Sensitivity of Automatic Ocean Salt Collector According to Design of Experiments. Journal of Ocean Engineering and Technology, 34(4), 253-262. DOI : 10.26748/KSOE.2020.025
  4. Y. J. Ji, J. S. Kwak, H. Y. Lee & S. C. Kim. (2015). Optimal Arrangement of Resilient Mount Installed on Frame Support Structure at Shipboard Equipment Under Shock Load. Journal of the Society of Naval Architects of Korea, 52(4), 298-304. DOI : 10.3744/SNAK.2015.52.4.298
  5. J. H. Park, D. Lee, J. W. Yang & C. Y. Song. (2019). Design Enhancement to Avoid Radar Mast Resonance in Large Ship Using Design of Experiments. Journal of Ocean Engineering and Technology, 33(1), 50-60. DOI : 10.26748/KSOE.2018.088
  6. DNV-GL. (2012). Load Transfer Operations. Det Norske Veritas.
  7. DNV-GL. (2013). Offshore installation Operations. Det Norske Veritas.
  8. GL. (2015). Guidelines for Load-outs. GL Noble Denton.
  9. GL. (2015). Guidelines for Marine Transportations. GL Noble Denton.
  10. H. S. Kim, B. W. Kim, D. Jung & H. G. Sung. (2017). Numerical Study for Topside Effect on Behavior of Deck Transportation Vessel and Seafastening Structure. Proceedings of OCEANS, Aberdeen. DOI : 10.1109/OCEANSE.2017.8084841
  11. DNV-GL. (2015). Structural Design of Offshore Units WSD Method. Det Norske Veritas.
  12. Simulia. (2018). Abaqus User Manual. Simulia.
  13. S. H. Park. (2012) Design of Experiments. Minyoung Publishing, Seoul.
  14. C. Y. Song & J. Lee. (2010). Comparative Study of Approximate Optimization Techniques in CAE-based Structural Design. Transactions of the Korean Society of Mechanical Engineers-A, 34(11), 1603-1611. DOI : 10.3795/KSME-A.2010.34.11.1603
  15. S. K. Cho, H. Byun & T. H. Lee. (2009). Selection Method of Global Model and Correlation Coefficients for Kriging Metamodel. Transactions of the Korean Society of Mechanical Engineers-A, 33(3), 813-818. DOI : 10.3795/KSME-A.2009.33.8.813
  16. S. H. Baek, H. S. Kim & D. S. Han. (2011). Structural Optimization of Variable Swash Plate for Automotive Compressor Using Orthogonal Polynomials. Transactions of the Korean Society of Mechanical Engineers-A, 35(10), 1273-1279. DOI : 10.3795/KSME-A.2011.35.10.1273
  17. N. Dyn, D. Levin & S. Rippa. (1986). Numerical Procedures for Surface Fitting of Scattered Data by Radial Basis Functions. SIAM Journal on Scientific and Statistical Computing, 7(2), 639-659. DOI : 10.1137/0907043