DOI QR코드

DOI QR Code

Efficient AIOT Information Link Processing in Cloud Edge Environment Using Blockchain-Based Time Series Information

블록체인 기반의 시계열 정보를 이용한 클라우드 엣지 환경의 효율적인 AIoT 정보 연계 처리 기법

  • Jeong, Yoon-Su (Department of information Communication Convergence Engineering, Mokwon University)
  • 정윤수 (목원대학교 정보통신융합공학부)
  • Received : 2021.01.25
  • Accepted : 2021.03.20
  • Published : 2021.03.28

Abstract

With the recent development of 5G and artificial intelligence technologies, it is interested in AIOT technology to collect, process, and analyze information in cloud edge environments. AIIoT technology is being applied to various smart environments, but research is needed to perform fast response processing through accurate analysis of collected information. In this paper, we propose a technique to minimize bandwidth and processing time by blocking the connection processing between AIOT information through fast processing and accurate analysis/forecasting of information collected in the smart environment. The proposed technique generates seeds for data indexes on AIOT devices by multipointing information collected by blockchain, and blocks them along with collection information to deliver them to the data center. At this time, we deploy Deep Neural Network (DNN) models between cloud and AIOT devices to reduce network overhead. Furthermore, server/data centers have improved the accuracy of inaccurate AIIoT information through the analysis and predicted results delivered to minimize latency. Furthermore, the proposed technique minimizes data latency by allowing it to be partitioned into a layered multilayer network because it groups it into blockchain by applying weights to AIOT information.

최근 5G와 인공지능 기술이 발전하면서 클라우드 엣지 환경에서 정보를 수집/처리/분석 하기 위한 AIoT 기술에 많은 관심을 갖고 있다. AIoT 기술은 다양한 스마트 환경에 적용되고 있지만 수집된 정보의 정확한 분석을 통해 빠른 대응처리를 수행할 수 있는 연구가 필요하다. 본 논문에서는 스마트 환경에서 수집된 정보를 AIoT에서 빠른 처리와 정확한 분석/예측을 통해 AIoT 정보들간 연계 처리를 블록 처리함으써 대역폭 및 처리시간을 최소화할 수 있는 기법을 제안한다. 제안 기법은 블록체인으로 수집된 정보를 다중 연계하여 AIoT 장치에서 데이터 인덱스에 대한 시드를 생성하여 수집정보와 함께 블록처리하여 데이터 센터로 전달한다. 이 때, 클라우드와 AIoT 장치사이는 DNN(Deep Neural Network) 모델을 배치하여 네트워크 오버헤드를 줄이도록 하였다. 그리고, 서버/데이터센터에서는 전달된 분석 및 예측된 결과를 통해 정확하지 못한 AIoT 정보의 정확도를 개선하여 지연시간을 최소화하도록 하였다. 또한, 제안기법은 AIoT 정보에 가중치를 적용하여 블록체인으로 그룹핑하기 때문에 계층화된 다층 네트워크로 분할 가능하도록 하여 데이터 지연시간을 최소화하였다.

Keywords

References

  1. Z. Zhao, K. M. Barijough & A. Gerstlauer. (2018). DeepThings: Distributed Adaptive Deep Learning Inference on Resource-Constrained IoT Edge Clusters. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 37(11), 2348-2359. https://doi.org/10.1109/tcad.2018.2858384
  2. Y. Chen, J. He, X. Zhang, C. Hao & D. Chen. (2019). Cloud-DNN: An Open Framework for Mapping DNN Models to Cloud FPGAs. Proceedings of International Symposium on Field-Programmable Gate Arrays (FPGA), s73-82.
  3. V. Sze, Y. Chen, T. Yang & J. S. Emer. (2017). Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proceedings of IEEE, 105(12), 2295-2329. https://doi.org/10.1109/JPROC.2017.2761740
  4. Q. Wu, K. He & X. Chen. (2020). Personbalized Federated Learning for Intelligent IoT Applications: A Cloud-edge Based Framework. IEEE Computer Graphics and Applications, PP(99), 1-1.
  5. R. Hadidi, J. Cao, M. S. Ryoo & H. Kim. (2019). Robustly executing DNNs in IoT systems using coded distributed computing. Proceedings of ACM/IEEE Design Automation Conference (DAC), 234.
  6. F. Forooghifar, A. Aminifar & D. Atienza. (2019). Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud. IEEE Transactions on Biomedical Circuits and Systems, 13(6), 1338-1350. https://doi.org/10.1109/tbcas.2019.2951222
  7. Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. N. Mudge, J. Mars & L. Tang. (2017). Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. Proceedings of International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 615-629.
  8. Z. Zhao, R. Zhao, J. Xia, X. Lei, D. Li, C. Yuen & L. Fan. (2020). A Novel Framework of Three-Hierarchical Offloading Optimization for MEC in Industrial IoT Networks. IEEE Transactions on Industrial Informatics (TII), 16(8), 5424-5434. https://doi.org/10.1109/tii.2019.2949348
  9. B. Yang, X. Cao, C. Yuen & L. Qian. (2020). Offloading Optimization in Edge Computing for Deep Learning Enabled Target Tracking by Internet-of UAVs. IEEE Internet of Things Journal(Early Access), 1-1.
  10. S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He & K. Chan. (2019). Adaptive Federated Learning in Resource Constrained Edge Computing Systems. IEEE Journal of Selected Areas in Communications (JSAC), 37(6), 1205-1221. https://doi.org/10.1109/jsac.2019.2904348
  11. J. Mills, J. Hu & G. Min. (2020). Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT. IEEE Internet of Things Journal (IoTJ), 7(7), 5986-5994. https://doi.org/10.1109/jiot.2019.2956615
  12. M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. P. Vetrov & R. Salakhutdinov. (2017). Spatially adaptive computation time for residual networks. Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 1790-1799.
  13. T. Bolukbasi, J. Wang, O. Dekel & V. Saligrama. (2017). Adaptive neural networks for efficient inference. Proceedings of International Conference on Machine Learning (ICML), 527-536.
  14. M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. P. Vetrov & R. Salakhutdinov. (2017). Spatially adaptive computation time for residual networks. Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 1790-1799.
  15. S. Teerapittayanon, B. McDanel & H. T. Kung. (2017). Distributed Deep Neural Networks Over the Cloud, the Edge and End Devices. Proceedings of International Conference on Distributed Computing Systems (ICDCS), 328-339.