References
- Adler, J. & Davis, Z. (2006). Opening another black box: Researching mathematics for teaching in mathematics teacher education, Journal for Research in Mathematics Education, 37(4), 270-296. DOI: 10.2307/30034851
- Bernardo, G. & Carmen, B. (2010). The ambiguity of the sign √. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the 6th Congress of the European Society for Research in Mathematics Education (pp. 509-518). France: CERME.
- Chung, Y. J. & Lee, K. H. (2018). Using what-if-not strategy for teaching definitions: Focusing on the exterior angle of polygon. School Mathematics, 20(3), 379-394. DOI : 10.29275/sm.2018.09.20.3.379
- Choi, G. S. (2014). Teaching geometry through Geogerba 5. Proceedings of the KSME 2014 Spring Conference on Mathematics Education (pp. 433-437). Seoul: KSME.
-
Do, J. H. & Park, Y. B. (2011). Comments on the definition of the rational exponent
$a{\frac{m}{n}}$ in contemporary Korean highschool mathematics textbooks. The Mathematical Education, 50(1), 61-67. DOI:10.7468/mathedu.2011.50.1.061 - Edwards, B. & Ward, M. (2004). Surprises from mathematics education research: Student (mis)use of mathematical definitions. American Mathematical Monthly, 111(5), 411-424. DOI:10.1080/00029890.2004.11920092
- Even, R. & Tirosh, D. (1995). Subject matter knowledge and knowledge about students as sources of teacher presentations of the subject matter. Educational Studies in Mathematics, 29(1), 1-20. DOI:10.1007/BF01273897
- Fan, L. (2013). Textbook research as scientific research: Towards a common ground on issues and methods of research on mathematics textbooks. ZDM: the international journal on mathematics education, 45, 765-777. DOI: 10.1007/s11858-013-0530-6
- Fischbein, E. (1993). The interaction between the formal, the algorithmic and the intuitive components in a mathematical activity. In R. Biehler, R. Scholz, R. Straber, & B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline (pp.231-245). Dordrecht: Kluwer.
- Foerster, A. P. (2003). Precalculus with Trigonometry. CA: Key Curriculum Press.
- Guberman, R. & Gorev, D. (2015). Knowledge concerning the mathematical horizon: A close view. Mathematics Education Research Journal, 27, 165-182. DOI:10.1007/s13394-014-0136-5
- Kim, I. S., Byun, C. H., & Ahn, S. H. (2012). Calculus. Seoul: Kyungmoonsa.
- Kim, W. K., Jo. M. S., Bang, G. S., Yoon, J. G., Shin, J. H., Yim, S. H. ..., Jeong, J. H. (2017). Mathematics I. Seoul: Visang.
- Ko, S. E., Lee, J. H., Lee, S. W., Choi, S. G., Kim, Y. H., Oh, T. G., & Jo, S. C. (2017). Mathematics I. Seoul: Sinsago.
- Kwak, D. Y., Kim, D. S., Seo, D. Y., Lee, S. Y., & Jin, G. T. (2001). Calculus. Seoul: Kyungmoonsa.
- Landau, S. I. (2001). Dictionaries: The Art and Craft of Lexicography. Cambridge: Cambridge University Press.
- Lang, S. (2001). Short Calculus. New York: Springer.
- Lavy, I. & Shriki, A. (2010). Engaging in problem posing activities in a dynamic geometry setting and the development of prospective teachers' mathematical knowledge. Journal of Mathematical Behavior, 29, 11-24. DOI: 10.1016/j.jmathb.2009.12.002
- Leikin, R. & Zazkis, R. (2010). On the content-dependence of prospective teachers' knowledge: A case of exemplifying definitions. International Journal of Mathematical Education in Science and Technology, 41(4), 451-466. DOI: 10.1080/00207391003605189
- Levenson, E. (2012). Teachers' knowledge of the nature of definitions: The case of the zero exponent. Journal of Mathematical Behavior, 31, 209-219. DOI: 10.1016/j.jmathb.2011.12.006
- Lewin, J. (2003). An Interactive Introduction to Mathematical Analysis. New York: Cambridge University Press.
- Magiera, T. M., van den Kieboom, A. L., & Moyer, C. J. (2011). Relationships among features of pre-service teachers' algebraic thinking. In B. Ubuz (Ed.), Proceedings 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 169-176). Turkey: PME.
- Matic, L. J. & Grancin, D. G. (2016). The use of the textbook as an artefact in the classroom: A case study in the light of a socio-didactical Tetrahedron. Journal fur Mathematik-Didaktik, 37(2), 349-374. DOI: 10.1007/s13138-016-0091-7
- Ministry of Education (2015). Mathematics curriculum. Seoul: Ministry of Education.
- Movshovitz-Hadar, N. (2011). Bridging between mathematics and education courses: Strategy games as generators of problem solving and proving tasks. In O. Zaslavsky & P. Sullivan (Eds.), Constructing Knowledge for Teaching Secondary Mathematics (pp. 117-140). New York: Springer.
- National Council of Teachers of Mathematics(2000). Principles and Standards for School Mathematics. Reston: NCTM.
- National Council of Teachers of Mathematics(2015). Principles to Actions: Ensuring Mathematics Success for All. Reston: NCTM.
- Ohkamoto, K. (2017). Mathematics II. Tokyo: Gikkosubang.
- Remillard, J. T., Harris, B., & Agodini, R. (2014). The influence of curriculum material design on opportunities for student learning. ZDM: the international journal on mathematics education, 46(5), 735-749. DOI: 10.1007/s11858-014-0585-z
- Robin, M. J., Fuller, E., & Harel, G. (2013). Double negative: The necessity principle, commognitive conflict, and negative number operations. Journal of Mathematical Behavior, 32, 649-659. DOI: 10.1016/j.jmathb.2013.08.001
- Ryu, H. C., Sunwoo, H. S., Shin, B. M., Jo, J. M., Lee, B. M., Kim, Y. S., ..., Jeong. S. Y. (2017). Mathematics I. Seoul: Chunjae.
- Sangwin, J. C. (2019). Textbook accounts of the rules of indices with rational exponents. International Journal of Mathematical Education in Science and Technology, 50(8). 1191-1209. DOI: 10.1080/0020739X.2019.1597935
- Seaman, C. & Szydlik, J. (2007). Mathematical sophistication among preservice elementary teachers. Journal of Mathematics Teacher Education, 10(3), 167-182. DOI: 10.1007/s10857-007-9033-0
- Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. DOI: 10.3102/0013189X015002004
- Tall, D. (2013). How Humans Learn to Think Mathematically: Exploring the Three Worlds of Mathematics. New York: Cambridge University Press.
- Telecommunication Technology Association (2021). Wolfram Alpha. Retrieved Jan. 21, 2021, from http://terms.tta.or.kr/dictionary/searchList.do
- Thomas, B. G., Finney, L. R., & Weir, D. M. (2003). Calculus. New York: Addison Wesley.
-
Tirosh, D. & Even, R. (1997). To define or not to define: The case of
$(-8)^{\frac{1}{3}}$ . Educational Studies in Mathematics, 33, 321-330. DOI: 10.1023/A:1002916606955 - Turner, F. & Rowland, T. (2011). The knowledge Quartet as an organizing framework for developing and deepening teachers' mathematics knowledge. In T. Rowland & K. Ruthven (Eds.), Mathematical Knowledge in Teaching (pp. 195-212). London: Springer.
- Verberg, D., Purcell, J. E., & Ridgon. E. S. (2000). Calculus. New York: Prentice Hall.
- Watson, J., Beswick, K., & Brown, N. (2006). Teachers' knowledge of their students as learners and how to intervene. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, Cultures and Learning Spaces: Proceedings of the 29th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 551-558). Adelaide: MERGA.
- Woo, J. H. & Cho, Y. M. (2001). A study on the definitions presented in school mathematics. The Journal of Education Research in Mathematics, 11(2), 363-384.
-
Woo, J. H. & Yim, J. H. (2008). Revisiting 0.999... and
$(-8)^{\frac{1}{3}}$ in school mathematics from the perspective of the algebraic permanence principle. For the Learning of Mathematics, 28(2), 11-16. - Yang, S. A. & Lee, S. J. (2019). Secondary teachers' advanced knowledge for teaching algebra. School Mathematics, 21(2), 419-439. DOI: 10.29275/sm.2019.06.21.2.419