References
- Bachant, P. and Wosnik, M. (2016), "Effects of Reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine", Energies, 9(2), 73, 1-18. https://doi.org/10.3390/en9020073.
- Baker, J.R. (1983), "Features to aid or enable self starting of fixed pitch low solidity vertical axis wind turbines", J. Wind Eng. Ind. Aerod., 15(1-3), 369-380. https://doi.org/10.1016/0167-6105(83)90206-4.
- Batista, N.C., Melicio, R., Mendes, V.M.F., Calderon, M. and Ramiro, A. (2015), "On a self-start Darrieus wind turbine: Blade design and field tests", Renew. Sustain. Energy Rev., 52, 508-522. https://doi.org/10.1016/j.rser.2015.07.147.
- Bazilevs, Y., Korobenko, A., Deng, X., Yan, J., Kinzel, M. and Dabiri, O. (2014), "Fluid-structure interaction modeling of vertical-axis wind turbines", J. Appl. Mech., 81(8). https://doi.org/10.1115/1.4027466.
- Blackwell, B.F., Sheldahl, R.E. and Feltz, L.V. (1976), "Wind tunnel performance data for the Darrieus wind turbine with NACA0012 blades", SAND76-0130, Sandia National Laboratories.
- Castelli, M.R., Betta, S.D. and Benini, E. (2012), "Effects of blade number on a straight-bladed vertical-axis Darrieus wind turbine", Int. J. Aerosp. Mech. Eng., 6(1), 68-74. doi.org/10.5281/zenodo.1079974.
- Dominy, R., Lunt, P., Bickerdyke, A. and Dominy, J. (2007), "Self-starting capability of a Darrieus turbine", Proc. I. Mech. E. Part A: J. Power Energy, 221(1), 111-120. https://doi.org/10.1243/09576509JPE340.
- Douak, M., Aouachria, Z., Rabehi, R. and Allam, N. (2018), "Wind energy systems: Analysis of the self-starting physics of vertical axis wind turbine", Renew. Sustain. Energy Rev., 81, 1602-1610. https://doi.org/10.1016/j.rser.2017.05.238.
- Hill, N., Dominy, R., Ingram, G. and Dominy, J. (2009), "Darrieus turbines: the physics of self-starting", Proc. I Mech E, Part A: Journal of Power and Energy, 223(1), 21-29. https://doi.org/10.1243/09576509JPE615.
- Howell, R., Qin, N., Edwards, J. and Durrani, N. (2010), "Wind tunnel and numerical study of a small vertical axis win turbine", Renew. Energy, 35(2), 412-422. https://doi.org/10.1016/j.renene.2009.07.025.
- Islam, M., Ting, D.S.K. and Fartaj, A. (2008), "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbine", Renew. Sustain. Energy Rev., 12(4), 1087-1109. https://doi.org/10.1016/j.rser.2006.10.023.
- Jin, X., Zhao, G., Gao, K. and Ju, W. (2015), "Darrieus vertical axis wind turbine: Basic research methods", Renew. Sustain. Energy Rev., 42, 212-225. https://doi.org/10.1016/j.rser.2014.10.021.
- Kentfield, J.A.C. (1996), The Fundamentals of Wind-Driven Water Pumpers, CRC Press, Boca Raton, U.S.A.
- Kirke, B.K. and Lazauskas, L. (1991), "Enhancing the performance of vertical axis wind turbine using a simple variable pitch system", Wind Eng., 15(4), 187-195.
- Kirke, B.K. and Lazauskas, L. (2011), "Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch", Renew. Energy, 36(3), 893-897. https://doi.org/10.1016/j.renene.2010.08.027.
- MacPhee, D.W. and Beyene, A. (2016), "Fluid-structure interaction analysis of a morphing vertical axis wind turbine", J. Fluids Struct., 60, 143-159. https://doi.org/10.1016/j.jfluidstructs.2015.10.010.
- Paraschivoiu, I. (2002), Wind Turbine Design with Emphasis on Darrieus Concept, Polytechnic International Press, Canada.
- Reis, G.E. and Blackwell, B.F. (1975), "Practical approximations to a Troposkien by straight-line and circular-arc segments", SAND 74-0100, Sandia National Laboratories.
- Rossetti, A. and Pavesi, G. (2013), "Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up", Renew. Energy, 50, 7-19. https://doi.org/10.1016/j.renene.2012.06.025.
- Sengupta, A.R., Biswas, A. and Gupta, R. (2017), "Investigations of HDarrieus rotors for different blade parameters at low wind speeds", Wind Struct., 25(6), 551-567. https://doi.org/10.12989/was.2017.25.6.551.
- Sheldahl, R.E. and Klimas, P.C. (1981), "Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbine", SAND 81-2114, Sandia National Laboratories. https://doi.org/10.2172/6548367.
- Strickland, J.H. (1975), "The Darrieus turbine: a performance prediction model using multiple streamtubes", SAND 75-0431, Sandia National Laboratories.
- Untaroiu, A., Wood, H.G., Allaire, P.E. and Ribando, R.J. (2011), "Investigation of self-starting capability of vertical axis wind turbines using a computational fluid dynamics approach", J. Solar Energy Eng., 133(4). https://doi.org/10.1115/1.4004705.
- Worasinchai, S., Ingram, G.L. and Dominy, R.G. (2016), "The physics of H-Darrieus turbine starting behavior", J. Eng. Gas Turbines Power, 138(6). https://doi.org/10.1115/1.4031870.
- Zamani, M., Maghrebi, M.J. and Moshizi, S.A. (2016), "Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine", Wind Struct., 22(5), 595-616. https://doi.org/10.12989/was.2016.22.5.595.
- Zamani, M., Maghrebi, M.J. and Varedi, S.R. (2016), "Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation", Renew. Energy, 95, 109-126. https://doi.org/10.1016/j.renene.2016.03.069.