DOI QR코드

DOI QR Code

Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast

  • Lee, Sol (Department of New Drug Development, Chungnam National University) ;
  • Nam, Miyoung (Department of New Drug Development, Chungnam National University) ;
  • Lee, Ah-Reum (Department of New Drug Development, Chungnam National University) ;
  • Lee, Jaewoong (Department of New Drug Development, Chungnam National University) ;
  • Woo, Jihye (Department of New Drug Development, Chungnam National University) ;
  • Kang, Nam Sook (Department of New Drug Development, Chungnam National University) ;
  • Balupuri, Anand (Department of New Drug Development, Chungnam National University) ;
  • Lee, Minho (Department of Life Science, Dongguk University-Seoul) ;
  • Kim, Seon-Young (Personalized Genomic Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ;
  • Ro, Hyunju (Department of Biological Science, College of Bioscience & Biotechnology, Chungnam National University) ;
  • Choi, Youn-Woong (Korea United Pharm. Inc.) ;
  • Kim, Dong-Uk (Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ;
  • Hoe, Kwang-Lae (Department of New Drug Development, Chungnam National University)
  • 투고 : 2020.09.25
  • 심사 : 2020.10.13
  • 발행 : 2021.03.01

초록

We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.

키워드

참고문헌

  1. Bhattacharya, S., Esquivel, B. D. and White, T. C. (2018) Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. mBio 9, e01291-18.
  2. Cavalheiro, A. S., Maboni, G., de Azevedo, M. I., Argenta, J. S., Pereira, D. I., Spader, T. B., Alves, S. H. and Santurio, J. M. (2009) In vitro activity of terbinafine combined with caspofungin and azoles against Pythium insidiosum. Antimicrob. Agents Chemother. 53, 2136-2138. https://doi.org/10.1128/AAC.01506-08
  3. Chou, T. C. (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621-681. https://doi.org/10.1124/pr.58.3.10
  4. Cohen, J. S., Srivastava, S., Farwell, K. D., Lu, H. M., Zeng, W., Lu, H., Chao, E. C. and Fatemi, A. (2015) ELP2 is a novel gene implicated in neurodevelopmental disabilities. Am. J. Med. Genet. A 167, 1391-1395. https://doi.org/10.1002/ajmg.a.36935
  5. Cokol, M., Chua, H. N., Tasan, M., Mutlu, B., Weinstein, Z. B., Suzuki, Y., Nergiz, M. E., Costanzo, M., Baryshnikova, A., Giaever, G., Nislow, C., Myers, C. L., Andrews, B. J., Boone, C. and Roth, F. P. (2011) Systematic exploration of synergistic drug pairs. Mol. Syst. Biol. 7, 544. https://doi.org/10.1038/msb.2011.71
  6. Darkes, M. J., Scott, L. J. and Goa, K. L. (2003) Terbinafine: a review of its use in onychomycosis in adults. Am. J. Clin. Dermatol. 4, 39-65. https://doi.org/10.2165/00128071-200304010-00005
  7. de Godoy, L. M. F., Olsen, J. V., Cox, J., Nielsen, M. L., Hubner, N. C., Frohlich, F., Walther, T. C. and Mann, M. (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251-1254. https://doi.org/10.1038/nature07341
  8. Dewhurst-Maridor, G., Abegg, D., David, F. P. A., Rougemont, J., Scott, C. C., Adibekian, A. and Riezman, H. (2017) The SAGA complex, together with transcription factors and the endocytic protein Rvs167p, coordinates the reprofiling of gene expression in response to changes in sterol composition in Saccharomyces cerevisiae. Mol. Biol. Cell 28, 2637-2649. https://doi.org/10.1091/mbc.E17-03-0169
  9. Doherty, L., Sheen, M. R., Vlachos, A., Choesmel, V., O'Donohue, M. F., Clinton, C., Schneider, H. E., Sieff, C. A., Newburger, P. E., Ball, S. E., Niewiadomska, E., Matysiak, M., Glader, B., Arceci, R. J., Farrar, J. E., Atsidaftos, E., Lipton, J. M., Gleizes, P. E. and Gazda, H. T. (2010) Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond-Blackfan anemia. Am. J. Hum. Genet. 86, 222-228. https://doi.org/10.1016/j.ajhg.2009.12.015
  10. Dong, Z., Zhu, X., Li, Y., Gan, L., Chen, H., Zhang, W. and Sun, J. (2018) Oncogenomic analysis identifies novel biomarkers for tumor stage mycosis fungoides. Medicine (Baltimore) 97, e10871. https://doi.org/10.1097/md.0000000000010871
  11. Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T. N., Dianzani, I., Ball, S., Tchernia, G., Klar, J., Matsson, H., Tentler, D., Mohandas, N., Carlsson, B. and Dahl, N. (1999) The gene encoding ribosomal protein S19 is mutated in DiamondBlackfan anaemia. Nat. Genet. 21, 169-175. https://doi.org/10.1038/5951
  12. Fang, Y., Hu, L., Zhou, X., Jaiseng, W., Zhang, B., Takami, T. and Kuno, T. (2012) A genomewide screen in Schizosaccharomyces pombe for genes affecting the sensitivity of antifungal drugs that target ergosterol biosynthesis. Antimicrob. Agents Chemother. 56, 1949-1959. https://doi.org/10.1128/AAC.05126-11
  13. Farrar, J. E., Quarello, P., Fisher, R., O'Brien, K. A., Aspesi, A., Parrella, S., Henson, A. L., Seidel, N. E., Atsidaftos, E., Prakash, S., Bari, S., Garelli, E., Arceci, R. J., Dianzani, I., Ramenghi, U., Vlachos, A., Lipton, J. M., Bodine, D. M. and Ellis, S. R. (2014) Exploiting pre-rRNA processing in Diamond Blackfan anemia gene discovery and diagnosis. Am. J. Hematol. 89, 985-991. https://doi.org/10.1002/ajh.23807
  14. Gazda, H. T., Grabowska, A., Merida-Long, L. B., Latawiec, E., Schneider, H. E., Lipton, J. M., Vlachos, A., Atsidaftos, E., Ball, S. E., Orfali, K. A., Niewiadomska, E., Da Costa, L., Tchernia, G., Niemeyer, C., Meerpohl, J. J., Stahl, J., Schratt, G., Glader, B., Backer, K., Wong, C., Nathan, D. G., Beggs, A. H. and Sieff, C. A. (2006) Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am. J. Hum. Genet. 79, 1110-1118. https://doi.org/10.1086/510020
  15. Giaever, G., Shoemaker, D. D., Jones, T. W., Liang, H., Winzeler, E. A., Astromoff, A. and Davis, R. W. (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21, 278-283. https://doi.org/10.1038/6791
  16. Gripp, K. W., Curry, C., Olney, A. H., Sandoval, C., Fisher, J., Chong, J. X., Genomics, U. W. C. f. M., Pilchman, L., Sahraoui, R., Stabley, D. L. and Sol-Church, K. (2014) Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am. J. Med. Genet. A 164A, 2240-2249.
  17. Han, S., Lee, M., Chang, H., Nam, M., Park, H. O., Kwak, Y. S., Ha, H. J., Kim, D., Hwang, S. O., Hoe, K. L. and Kim, D. U. (2013) Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach. Biochem. Biophys. Res. Commun. 436, 613-618. https://doi.org/10.1016/j.bbrc.2013.05.138
  18. Han, T. X., Xu, X. Y., Zhang, M. J., Peng, X. and Du, L. L. (2010) Global fitness profiling of fission yeast deletion strains by barcode sequencing. Genome Biol. 11, R60. https://doi.org/10.1186/gb-2010-11-6-r60
  19. Hayles, J., Wood, V., Jeffery, L., Hoe, K. L., Kim, D. U., Park, H. O., Salas-Pino, S., Heichinger, C. and Nurse, P. (2013) A genome-wide resource of cell cycle and cell shape genes of fission yeast. Open Biol. 3, 130053. https://doi.org/10.1098/rsob.130053
  20. Hickman, M. J., Spatt, D. and Winston, F. (2011) The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics 188, 325-338. https://doi.org/10.1534/genetics.111.128322
  21. Housden, B. E., Muhar, M., Gemberling, M., Gersbach, C. A., Stainier, D. Y., Seydoux, G., Mohr, S. E., Zuber, J. and Perrimon, N. (2017) Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat. Rev. Genet. 18, 24-40. https://doi.org/10.1038/nrg.2016.118
  22. Ianiri, G. and Idnurm, A. (2015) Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization. mBio 6, e02334-14.
  23. Ito, Y., Hashimoto, M., Hirota, K., Ohkura, N., Morikawa, H., Nishikawa, H., Tanaka, A., Furu, M., Ito, H., Fujii, T., Nomura, T., Yamazaki, S., Morita, A., Vignali, D. A., Kappler, J. W., Matsuda, S., Mimori, T., Sakaguchi, N. and Sakaguchi, S. (2014) Detection of T cell responses to a ubiquitous cellular protein in autoimmune disease. Science 346, 363-368. https://doi.org/10.1126/science.1259077
  24. Jackson, R. J., Hellen, C. U. and Pestova, T. V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113-127. https://doi.org/10.1038/nrm2838
  25. Jallepalli, P. V. and Pellman, D. (2007) Cell biology. Aneuploidy in the balance. Science 317, 904-905. https://doi.org/10.1126/science.1146857
  26. Kim, D. U., Hayles, J., Kim, D., Wood, V., Park, H. O., Won, M., Yoo, H. S., Duhig, T., Nam, M., Palmer, G., Han, S., Jeffery, L., Baek, S. T., Lee, H., Shim, Y. S., Lee, M., Kim, L., Heo, K. S., Noh, E. J., Lee, A. R., Jang, Y. J., Chung, K. S., Choi, S. J., Park, J. Y., Park, Y., Kim, H. M., Park, S. K., Park, H. J., Kang, E. J., Kim, H. B., Kang, H. S., Park, H. M., Kim, K., Song, K., Song, K. B., Nurse, P. and Hoe, K. L. (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 28, 617-623. https://doi.org/10.1038/nbt.1628
  27. Korach, K. S., Metzler, M. and McLachlan, J. A. (1978) Estrogenic activity in vivo and in vitro of some diethylstilbestrol metabolites and analogs. Proc. Natl. Acad. Sci. U.S.A. 75, 468-471. https://doi.org/10.1073/pnas.75.1.468
  28. Kramer, R. and Cohen, D. (2004) Functional genomics to new drug targets. Nat. Rev. Drug Discov. 3, 965-972. https://doi.org/10.1038/nrd1552
  29. Lee, A. S., Kranzusch, P. J. and Cate, J. H. (2015) eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature 522, 111-114. https://doi.org/10.1038/nature14267
  30. Lee, M., Choi, S. J., Han, S., Nam, M., Kim, D., Kim, D. U. and Hoe, K. L. (2018) Mutation analysis of synthetic DNA barcodes in a fission yeast gene deletion library by sanger sequencing. Genomics Inform. 16, 22-29. https://doi.org/10.5808/GI.2018.16.2.22
  31. Lum, P. Y., Armour, C. D., Stepaniants, S. B., Cavet, G., Wolf, M. K., Butler, J. S., Hinshaw, J. C., Garnier, P., Prestwich, G. D., Leonardson, A., Garrett-Engele, P., Rush, C. M., Bard, M., Schimmack, G., Phillips, J. W., Roberts, C. J. and Shoemaker, D. D. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121-137. https://doi.org/10.1016/S0092-8674(03)01035-3
  32. Ma, F., Li, X., Ren, J., Guo, R., Li, Y., Liu, J., Sun, Y., Liu, Z., Jia, J. and Li, W. (2019) Downregulation of eukaryotic translation initiation factor 3b inhibited proliferation and metastasis of gastric cancer. Cell Death Dis. 10, 623. https://doi.org/10.1038/s41419-019-1846-0
  33. Mahoney, C. E., Pirman, D., Chubukov, V., Sleger, T., Hayes, S., Fan, Z. P., Allen, E. L., Chen, Y., Huang, L., Liu, M., Zhang, Y., McDonald, G., Narayanaswamy, R., Choe, S., Chen, Y., Gross, S., Cianchetta, G., Padyana, A. K., Murray, S., Liu, W., Marks, K. M., Murtie, J., Dorsch, M., Jin, S., Nagaraja, N., Biller, S. A., Roddy, T., Popovici-Muller, J. and Smolen, G. A. (2019) A chemical biology screen identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. Nat. Commun. 10, 96. https://doi.org/10.1038/s41467-018-07959-4
  34. Mukhopadhyay, R., Ray, P. S., Arif, A., Brady, A. K., Kinter, M. and Fox, P. L. (2008) DAPK-ZIPK-L13a axis constitutes a negativefeedback module regulating inflammatory gene expression. Mol. Cell 32, 371-382. https://doi.org/10.1016/j.molcel.2008.09.019
  35. Nowosielski, M., Hoffmann, M., Wyrwicz, L. S., Stepniak, P., Plewczynski, D. M., Lazniewski, M., Ginalski, K. and Rychlewski, L. (2011) Detailed mechanism of squalene epoxidase inhibition by terbinafine. J. Chem. Inf. Model. 51, 455-462. https://doi.org/10.1021/ci100403b
  36. Ostrosky-Zeichner, L., Casadevall, A., Galgiani, J. N., Odds, F. C. and Rex, J. H. (2010) An insight into the antifungal pipeline: selected new molecules and beyond. Nat. Rev. Drug Discov. 9, 719-727. https://doi.org/10.1038/nrd3074
  37. Padyana, A. K., Gross, S., Jin, L., Cianchetta, G., Narayanaswamy, R., Wang, F., Wang, R., Fang, C., Lv, X., Biller, S. A., Dang, L., Mahoney, C. E., Nagaraja, N., Pirman, D., Sui, Z., Popovici-Muller, J. and Smolen, G. A. (2019) Structure and inhibition mechanism of the catalytic domain of human squalene epoxidase. Nat. Commun. 10, 97. https://doi.org/10.1038/s41467-018-07928-x
  38. Parsons, A. B., Lopez, A., Givoni, I. E., Williams, D. E., Gray, C. A., Porter, J., Chua, G., Sopko, R., Brost, R. L., Ho, C. H., Wang, J., Ketela, T., Brenner, C., Brill, J. A., Fernandez, G. E., Lorenz, T. C., Payne, G. S., Ishihara, S., Ohya, Y., Andrews, B., Hughes, T. R., Frey, B. J., Graham, T. R., Andersen, R. J. and Boone, C. (2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126, 611-625. https://doi.org/10.1016/j.cell.2006.06.040
  39. Rancati, G., Moffat, J., Typas, A. and Pavelka, N. (2018) Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34-49. https://doi.org/10.1038/nrg.2017.74
  40. Rodrigues, M. L. (2018) The Multifunctional fungal ergosterol. mBio 9, e01755-18. https://doi.org/10.1128/mBio.01755-18
  41. Ryder, N. S. (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br. J. Dermatol. 126 Suppl 39, 2-7. https://doi.org/10.1111/j.1365-2133.1992.tb00001.x
  42. Ryder, N. S., Frank, I. and Dupont, M. C. (1986) Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate. Antimicrob. Agents Chemother. 29, 858-860. https://doi.org/10.1128/AAC.29.5.858
  43. Schenone, M., Dancik, V., Wagner, B. K. and Clemons, P. A. (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232-240. https://doi.org/10.1038/nchembio.1199
  44. Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B. and Liu, J. O. (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat. Chem. Biol. 6, 209-217. https://doi.org/10.1038/nchembio.304
  45. Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelson, T., Heckl, D., Ebert, B. L., Root, D. E., Doench, J. G. and Zhang, F. (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84-87. https://doi.org/10.1126/science.1247005
  46. Singh, P., Saxena, R., Srinivas, G., Pande, G. and Chattopadhyay, A. (2013) Cholesterol biosynthesis and homeostasis in regulation of the cell cycle. PLoS ONE 8, e58833. https://doi.org/10.1371/journal.pone.0058833
  47. Sipiczki, M. (2000) Where does fission yeast sit on the tree of life? Genome Biol. 1, REVIEWS1011.
  48. Spann, N. J. and Glass, C. K. (2013) Sterols and oxysterols in immune cell function. Nat. Immunol. 14, 893-900. https://doi.org/10.1038/ni.2681
  49. Sui, Z., Zhou, J., Cheng, Z. and Lu, P. (2015) Squalene epoxidase (SQLE) promotes the growth and migration of the hepatocellular carcinoma cells. Tumour Biol. 36, 6173-6179. https://doi.org/10.1007/s13277-015-3301-x
  50. Takami, T., Fang, Y., Zhou, X., Jaiseng, W., Ma, Y. and Kuno, T. (2012) A genetic and pharmacological analysis of isoprenoid pathway by LC-MS/MS in fission yeast. PLoS ONE 7, e49004. https://doi.org/10.1371/journal.pone.0049004
  51. Takemasa, I., Kittaka, N., Hitora, T., Watanabe, M., Matsuo, E., Mizushima, T., Ikeda, M., Yamamoto, H., Sekimoto, M., Nishimura, O., Doki, Y. and Mori, M. (2012) Potential biological insights revealed by an integrated assessment of proteomic and transcriptomic data in human colorectal cancer. Int. J. Oncol. 40, 551-559. https://doi.org/10.3892/ijo.2011.1244
  52. Torres, M., Condon, C., Balada, J. M., Squires, C. and Squires, C. L. (2001) Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both nonribosomal and ribosomal RNA antitermination. EMBO J. 20, 3811-3820. https://doi.org/10.1093/emboj/20.14.3811
  53. Ulirsch, J. C., Verboon, J. M., Kazerounian, S., Guo, M. H., Yuan, D., Ludwig, L. S., Handsaker, R. E., Abdulhay, N. J., Fiorini, C., Genovese, G., Lim, E. T., Cheng, A., Cummings, B. B., Chao, K. R., Beggs, A. H., Genetti, C. A., Sieff, C. A., Newburger, P. E., Niewiadomska, E., Matysiak, M., Vlachos, A., Lipton, J. M., Atsidaftos, E., Glader, B., Narla, A., Gleizes, P. E., O'Donohue, M. F., Montel-Lehry, N., Amor, D. J., McCarroll, S. A., O'Donnell-Luria, A. H., Gupta, N., Gabriel, S. B., MacArthur, D. G., Lander, E. S., Lek, M., Da Costa, L., Nathan, D. G., Korostelev, A. A., Do, R., Sankaran, V. G. and Gazda, H. T. (2018) The genetic landscape of DiamondBlackfan anemia. Am. J. Hum. Genet. 103, 930-947. https://doi.org/10.1016/j.ajhg.2018.10.027
  54. Veitia, R. A. and Potier, M. C. (2015) Gene dosage imbalances: action, reaction, and models. Trends Biochem. Sci. 40, 309-317. https://doi.org/10.1016/j.tibs.2015.03.011
  55. Visconte, V., Przychodzen, B., Han, Y., Nawrocki, S. T., Thota, S., Kelly, K. R., Patel, B. J., Hirsch, C., Advani, A. S., Carraway, H. E., Sekeres, M. A., Maciejewski, J. P. and Carew, J. S. (2017) Complete mutational spectrum of the autophagy interactome: a novel class of tumor suppressor genes in myeloid neoplasms. Leukemia 31, 505-510. https://doi.org/10.1038/leu.2016.295
  56. Wang, H., Ru, Y., Sanchez-Carbayo, M., Wang, X., Kieft, J. S. and Theodorescu, D. (2013) Translation initiation factor eIF3b expression in human cancer and its role in tumor growth and lung colonization. Clin. Cancer Res. 19, 2850-2860. https://doi.org/10.1158/1078-0432.CCR-12-3084
  57. Warner, J. R. and McIntosh, K. B. (2009) How common are extraribosomal functions of ribosomal proteins? Mol. Cell 34, 3-11. https://doi.org/10.1016/j.molcel.2009.03.006
  58. Weiss, R. L., Kukora, J. R. and Adams, J. (1975) The relationship between enzyme activity, cell geometry, and fitness in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 72, 794-798. https://doi.org/10.1073/pnas.72.3.794
  59. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., El Bakkoury, M., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Liebundguth, N., Lockhart, D. J., Lucau-Danila, A., Lussier, M., M'Rabet, N., Menard, P., Mittmann, M., Pai, C., Rebischung, C., Revuelta, J. L., Riles, L., Roberts, C. J., Ross-MacDonald, P., Scherens, B., Snyder, M., Sookhai-Mahadeo, S., Storms, R. K., Veronneau, S., Voet, M., Volckaert, G., Ward, T. R., Wysocki, R., Yen, G. S., Yu, K., Zimmermann, K., Philippsen, P., Johnston, M. and Davis, R. W. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901-906. https://doi.org/10.1126/science.285.5429.901
  60. Xu, F., Xu, C. Z., Gu, J., Liu, X., Liu, R., Huang, E., Yuan, Y., Zhao, G., Jiang, J., Xu, C., Chu, Y., Lu, C. and Ge, D. (2016) Eukaryotic translation initiation factor 3B accelerates the progression of esophageal squamous cell carcinoma by activating beta-catenin signaling pathway. Oncotarget 7, 43401-43411. https://doi.org/10.18632/oncotarget.9726
  61. Zhang, Z., Li, C., Wu, F., Ma, R., Luan, J., Yang, F., Liu, W., Wang, L., Zhang, S., Liu, Y., Gu, J., Hua, W., Fan, M., Peng, H., Meng, X., Song, N., Bi, X., Gu, C., Zhang, Z., Huang, Q., Chen, L., Xiang, L., Xu, J., Zheng, Z. and Jiang, Z. (2015) Genomic variations of the mevalonate pathway in porokeratosis. Elife 4, e06322. https://doi.org/10.7554/elife.06322
  62. Zhou, X., Hao, Q., Liao, J. M., Liao, P. and Lu, H. (2013) Ribosomal protein S14 negatively regulates c-Myc activity. J. Biol. Chem. 288, 21793-21801. https://doi.org/10.1074/jbc.M112.445122
  63. Zhou, X., Liao, W. J., Liao, J. M., Liao, P. and Lu, H. (2015) Ribosomal proteins: functions beyond the ribosome. J. Mol. Cell Biol. 7, 92-104. https://doi.org/10.1093/jmcb/mjv014
  64. Zinzalla, V., Stracka, D., Oppliger, W. and Hall, M. N. (2011) Activation of mTORC2 by association with the ribosome. Cell 144, 757-768. https://doi.org/10.1016/j.cell.2011.02.014