References
- Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
- Chang, T. S. (2014) Isolation, bioactivity, and production of orthohydroxydaidzein and ortho-hydroxygenistein. Int. J. Mol. Sci. 15, 5699-5716. https://doi.org/10.3390/ijms15045699
- Cui, Y., Park, J. Y., Wu, J., Lee, J. H., Yang, Y. S., Kang, M. S., Jung, S. C., Park, J. M., Yoo, E. S., Kim, S. H., Ahn Jo, S., Suk, K. and Eun, S. Y. (2015) Dieckol attenuates microglia-mediated neuronal cell death via ERK, Akt and NADPH oxidase-mediated pathways. Korean J. Physiol. Pharmacol. 19, 219-228. https://doi.org/10.4196/kjpp.2015.19.3.219
- Dulla, Y. A., Kurauchi, Y., Hisatsune, A., Seki, T., Shudo, K. and Katsuki, H. (2016) Regulatory mechanisms of vitamin D3 on production of nitric oxide and pro-inflammatory cytokines in microglial BV-2 cells. Neurochem. Res. 41, 2848-2858. https://doi.org/10.1007/s11064-016-2000-3
- Floyd, R. A. and Hensley, K. (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23, 795-807. https://doi.org/10.1016/S0197-4580(02)00019-2
- Gao, L., Han, H., Wang, H., Cao, L. and Feng, W. H. (2019) IL-10 knockdown with siRNA enhances the efficacy of Doxorubicin chemotherapy in EBV-positive tumors by inducing lytic cycle via PI3K/p38 MAPK/NF-kB pathway. Cancer Lett. 462, 12-22. https://doi.org/10.1016/j.canlet.2019.07.016
- Hemmer, K., Fransen, L., Vanderstichele, H., Vanmechelen, E. and Heuschling, P. (2001) An in vitro model for the study of microglia-induced neurodegeneration: involvement of nitric oxide and tumor necrosis factor-alpha. Neurochem. Int. 38, 557-565. https://doi.org/10.1016/S0197-0186(00)00119-4
- Henn, A., Lund, S., Hedtjarn, M., Schrattenholz, A., Porzgen, P. and Leist, M. (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26, 83-94.
- Hsieh, H. L., Wang, H. H., Wu, W. B., Chu, P. J. and Yang, C. M. (2010) Transforming growth factor-beta1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-kappaB pathways. J. Neuroinflammation 7, 88. https://doi.org/10.1186/1742-2094-7-88
- Huang, P. H., Tseng, C. H., Lin, C. Y., Lee, C. W. and Yen, F. L. (2018) Preparation, characterizations and anti-pollutant activity of 7,3',4'-trihydroxyisoflavone nanoparticles in particulate matter-induced HaCaT keratinocytes. Int. J. Nanomedicine 13, 3279-3293. https://doi.org/10.2147/IJN.S153323
- Huang, X., Xi, Y., Mao, Z., Chu, X., Zhang, R., Ma, X., Ni, B., Cheng, H. and You, H. (2019) Vanillic acid attenuates cartilage degeneration by regulating the MAPK and PI3K/AKT/NF-kappaB pathways. Eur. J. Pharmacol. 859, 172481. https://doi.org/10.1016/j.ejphar.2019.172481
- Kang, C. H., Jayasooriya, R. G., Choi, Y. H., Moon, S. K., Kim, W. J. and Kim, G. Y. (2013) beta-Ionone attenuates LPS-induced proinflammatory mediators such as NO, PGE2 and TNF-alpha in BV2 microglial cells via suppression of the NF-kappaB and MAPK pathway. Toxicol. In Vitro 27, 782-787. https://doi.org/10.1016/j.tiv.2012.12.012
- Kaur, D., Sharma, V. and Deshmukh, R. (2019) Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease. Inflammopharmacology 27, 663-677. https://doi.org/10.1007/s10787-019-00580-x
- Kim, S., Lee, M. S., Lee, B., Gwon, W. G., Joung, E. J., Yoon, N. Y. and Kim, H. R. (2014) Anti-inflammatory effects of sargachromenol-rich ethanolic extract of Myagropsis myagroides on lipopolysaccharide-stimulated BV-2 cells. BMC complement. Altern. Med. 14, 231. https://doi.org/10.1186/1472-6882-14-231
- Kim, S. K., Ko, Y. H., Lee, S. Y. and Jang, C. G. (2020) Memory-enhancing effects of 7,3',4'-trihydroxyisoflavone by regulation of cholinergic function and BDNF signaling pathway in mice. Food Chem. Toxicol. 137, 111160. https://doi.org/10.1016/j.fct.2020.111160
- Klus, K. and Barz, W. (1995) Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daidzein and glycitein by bacteria isolated from tempe. Arch. Microbiol. 164, 428-434. https://doi.org/10.1007/BF02529741
- Ko, Y. H., Kim, S. K., Kwon, S. H., Seo, J. Y., Lee, B. R., Kim, Y. J., Hur, K. H., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2019a) 7,8,4'-Trihydroxyisoflavone, a metabolized product of daidzein, attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y Cells. Biomol. Ther. (Seoul) 27, 363-372. https://doi.org/10.4062/biomolther.2018.211
- Ko, Y. H., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2018) 6,7,4'-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Eur. J. Pharmacol. 826, 140-147. https://doi.org/10.1016/j.ejphar.2018.02.048
- Ko, Y. H., Kwon, S. H., Kim, S. K., Lee, B. R., Hur, K. H., Kim, Y. J., Kim, S. E., Lee, S. Y. and Jang, C. G. (2019b) Protective effects of 6,7,4'-trihydroxyisoflavone, a major metabolite of daidzein, on 6-hydroxydopamine-induced neuronal cell death in SH-SY5Y human neuroblastoma cells. Arch. Pharm. Res. 42, 1081-1091. https://doi.org/10.1007/s12272-019-01191-4
- Kulling, S. E., Honig, D. M. and Metzler, M. (2001) Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. J. Agric. Food Chem. 49, 3024-3033. https://doi.org/10.1021/jf0012695
- Lammersfeld, C. A., King, J., Walker, S., Vashi, P. G., Grutsch, J. F., Lis, C. G. and Gupta, D. (2009) Prevalence, sources, and predictors of soy consumption in breast cancer. Nutr. J. 8, 2. https://doi.org/10.1186/1475-2891-8-2
- Li, N., Liu, B. W., Ren, W. Z., Liu, J. X., Li, S. N., Fu, S. P., Zeng, Y. L., Xu, S. Y., Yan, X., Gao, Y. J., Liu, D. F. and Wang, W. (2016) GLP-2 attenuates LPS-induced inflammation in BV-2 cells by inhibiting ERK1/2, JNK1/2 and NF-kappaB signaling pathways. Int. J. Mol. Sci. 17, 190. https://doi.org/10.3390/ijms17020190
- Lim, T. G., Lee, S. Y., Duan, Z., Lee, M. H., Chen, H., Liu, F., Liu, K., Jung, S. K., Kim, D. J., Bode, A. M., Lee, K. W. and Dong, Z. (2017) The prolyl isomerase Pin1 is a novel target of 6,7,4'-trihydroxyisoflavone for suppressing esophageal cancer growth. Cancer Prev. Res. (Phila.) 10, 308-318. https://doi.org/10.1158/1940-6207.CAPR-16-0318
- Lu, Y., An, Y., Lv, C., Ma, W., Xi, Y. and Xiao, R. (2018) Dietary soybean isoflavones in Alzheimer's disease prevention. Asia Pac. J. Clin. Nutr. 27, 946-954.
- Lull, M. E. and Block, M. L. (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7, 354-365. https://doi.org/10.1016/j.nurt.2010.05.014
- Mattson, M. P. (2005) NF-kappaB in the survival and plasticity of neurons. Neurochem. Res. 30, 883-893. https://doi.org/10.1007/s11064-005-6961-x
- Miguez, A. C., Francisco, J. C., Barberato, S. H., Simeoni, R., Precoma, D., Do Amaral, V. F., Rodrigues, E., Olandoski, M., de Noronha, L., Greca, F. H., de Carvalho, K. A., Faria-Neto, J. R. and Guarita-Souza, L. C. (2012) The functional effect of soybean extract and isolated isoflavone on myocardial infarction and ventricular dysfunction: the soybean extract on myocardial infarction. J. Nutr. Biochem. 23, 1740-1748. https://doi.org/10.1016/j.jnutbio.2011.05.017
- O'neill, L. A. and Kaltschmidt, C. (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 20, 252-258. https://doi.org/10.1016/S0166-2236(96)01035-1
- Pandur, E., Varga, E., Tamasi, K., Pap, R., Nagy, J. and Sipos, K. (2018) Effect of inflammatory mediators lipopolysaccharide and lipoteichoic acid on iron metabolism of differentiated SH-SY5Y cells alters in the presence of BV-2 microglia. Int. J. Mol. Sci. 20, 17. https://doi.org/10.3390/ijms20010017
- Park, J., Min, J. S., Kim, B., Chae, U. B., Yun, J. W., Choi, M. S., Kong, I. K., Chang, K. T. and Lee, D. S. (2015) Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kappaB pathways. Neurosci. Lett. 584, 191-196. https://doi.org/10.1016/j.neulet.2014.10.016
- Park, S. H., Lee, C. H., Lee, J. Y., Yang, H., Kim, J. H., Park, J. H. Y., Kim, J. E. and Lee, K. W. (2020) Topical application of 7,3',4'-trihydroxyisoflavone alleviates atopic dermatitis-like symptoms in NC/Nga mice. Planta Med. 86, 190-197. https://doi.org/10.1055/a-1068-7983
- Roh, C. (2014) Microbial transformation of bioactive compounds and production of ortho-dihydroxyisoflavones and glycitein from natural fermented soybean paste. Biomolecules 4, 1093-1101. https://doi.org/10.3390/biom4041093
- Rufer, C. E. and Kulling, S. E. (2006) Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J. Agric. Food Chem. 54, 2926-2931. https://doi.org/10.1021/jf053112o
- Salminen, A., Huuskonen, J., Ojala, J., Kauppinen, A., Kaarniranta, K. and Suuronen, T. (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflammaging. Ageing Res. Rev. 7, 83-105. https://doi.org/10.1016/j.arr.2007.09.002
- Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S. (2001) Molecular mechanisms underlying chemo-preventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481, 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
- Villa, A., Vegeto, E., Poletti, A. and Maggi, A. (2016) Estrogens, neuro-inflammation, and neurodegeneration. Endocr. Rev. 37, 372-402. https://doi.org/10.1210/er.2016-1007
- Wu, P. S., Ding, H. Y., Yen, J. H., Chen, S. F., Lee, K. H. and Wu, M. J. (2018) Anti-inflammatory activity of 8-hydroxydaidzein in LPS-stimulated BV2 microglial cells via activation of Nrf2-antioxidant and attenuation of Akt/NF-kappaB-inflammatory signaling pathways, as well as inhibition of COX-2 activity. J. Agric. Food Chem. 66, 5790-5801. https://doi.org/10.1021/acs.jafc.8b00437
- Yuskaitis, C. J. and Jope, R. S. (2009) Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell. Signal. 21, 264-273. https://doi.org/10.1016/j.cellsig.2008.10.014
Cited by
- Noble 3,4-Seco-triterpenoid Glycosides from the Fruits of Acanthopanax sessiliflorus and Their Anti-Neuroinflammatory Effects vol.10, pp.9, 2021, https://doi.org/10.3390/antiox10091334
- Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer’s disease vol.53, pp.4, 2021, https://doi.org/10.1080/03602532.2021.1977316