DOI QR코드

DOI QR Code

Antineuroinflammatory Effects of 7,3',4'-Trihydroxyisoflavone in Lipopolysaccharide-Stimulated BV2 Microglial Cells through MAPK and NF-κB Signaling Suppression

  • Kim, Seon-Kyung (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Ko, Yong-Hyun (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Youyoung (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Seok-Yong (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Jang, Choon-Gon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
  • Received : 2020.05.25
  • Accepted : 2020.07.24
  • Published : 2021.03.01

Abstract

Neuroinflammation―a common pathological feature of neurodegenerative disorders such as Alzheimer's disease―is mediated by microglial activation. Thus, inhibiting microglial activation is vital for treating various neurological disorders. 7,3',4'-Trihydroxyisoflavone (THIF)―a secondary metabolite of the soybean compound daidzein―possesses antioxidant and anticancer properties. However, the effects of 7,3',4'-THIF on microglial activation have not been explored. In this study, antineuroinflammatory effects of 7,3',4'-THIF in lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined. 7,3',4'-THIF significantly suppressed the production of the proinflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) as well as of the proinflammatory cytokine interleukin-6 (IL-6) in LPS-stimulated BV2 microglial cells. Moreover, 7,3',4'-THIF markedly inhibited reactive oxygen species (ROS) generation. Western blotting revealed that 7,3',4'-THIF diminished LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), glycogen synthase kinase-3β (GSK-3β), and nuclear factor kappa B (NF-κB). Overall, 7,3',4'-THIF exerts antineuroinflammatory effects against LPS-induced microglial activation by suppressing mitogen-activated protein kinase (MAPK) and NF-κB signaling, ultimately reducing proinflammatory responses. Therefore, these antineuroinflammatory effects of 7,3',4'-THIF suggest its potential as a therapeutic agent for neurodegenerative disorders.

Keywords

References

  1. Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
  2. Chang, T. S. (2014) Isolation, bioactivity, and production of orthohydroxydaidzein and ortho-hydroxygenistein. Int. J. Mol. Sci. 15, 5699-5716. https://doi.org/10.3390/ijms15045699
  3. Cui, Y., Park, J. Y., Wu, J., Lee, J. H., Yang, Y. S., Kang, M. S., Jung, S. C., Park, J. M., Yoo, E. S., Kim, S. H., Ahn Jo, S., Suk, K. and Eun, S. Y. (2015) Dieckol attenuates microglia-mediated neuronal cell death via ERK, Akt and NADPH oxidase-mediated pathways. Korean J. Physiol. Pharmacol. 19, 219-228. https://doi.org/10.4196/kjpp.2015.19.3.219
  4. Dulla, Y. A., Kurauchi, Y., Hisatsune, A., Seki, T., Shudo, K. and Katsuki, H. (2016) Regulatory mechanisms of vitamin D3 on production of nitric oxide and pro-inflammatory cytokines in microglial BV-2 cells. Neurochem. Res. 41, 2848-2858. https://doi.org/10.1007/s11064-016-2000-3
  5. Floyd, R. A. and Hensley, K. (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23, 795-807. https://doi.org/10.1016/S0197-4580(02)00019-2
  6. Gao, L., Han, H., Wang, H., Cao, L. and Feng, W. H. (2019) IL-10 knockdown with siRNA enhances the efficacy of Doxorubicin chemotherapy in EBV-positive tumors by inducing lytic cycle via PI3K/p38 MAPK/NF-kB pathway. Cancer Lett. 462, 12-22. https://doi.org/10.1016/j.canlet.2019.07.016
  7. Hemmer, K., Fransen, L., Vanderstichele, H., Vanmechelen, E. and Heuschling, P. (2001) An in vitro model for the study of microglia-induced neurodegeneration: involvement of nitric oxide and tumor necrosis factor-alpha. Neurochem. Int. 38, 557-565. https://doi.org/10.1016/S0197-0186(00)00119-4
  8. Henn, A., Lund, S., Hedtjarn, M., Schrattenholz, A., Porzgen, P. and Leist, M. (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26, 83-94.
  9. Hsieh, H. L., Wang, H. H., Wu, W. B., Chu, P. J. and Yang, C. M. (2010) Transforming growth factor-beta1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-kappaB pathways. J. Neuroinflammation 7, 88. https://doi.org/10.1186/1742-2094-7-88
  10. Huang, P. H., Tseng, C. H., Lin, C. Y., Lee, C. W. and Yen, F. L. (2018) Preparation, characterizations and anti-pollutant activity of 7,3',4'-trihydroxyisoflavone nanoparticles in particulate matter-induced HaCaT keratinocytes. Int. J. Nanomedicine 13, 3279-3293. https://doi.org/10.2147/IJN.S153323
  11. Huang, X., Xi, Y., Mao, Z., Chu, X., Zhang, R., Ma, X., Ni, B., Cheng, H. and You, H. (2019) Vanillic acid attenuates cartilage degeneration by regulating the MAPK and PI3K/AKT/NF-kappaB pathways. Eur. J. Pharmacol. 859, 172481. https://doi.org/10.1016/j.ejphar.2019.172481
  12. Kang, C. H., Jayasooriya, R. G., Choi, Y. H., Moon, S. K., Kim, W. J. and Kim, G. Y. (2013) beta-Ionone attenuates LPS-induced proinflammatory mediators such as NO, PGE2 and TNF-alpha in BV2 microglial cells via suppression of the NF-kappaB and MAPK pathway. Toxicol. In Vitro 27, 782-787. https://doi.org/10.1016/j.tiv.2012.12.012
  13. Kaur, D., Sharma, V. and Deshmukh, R. (2019) Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease. Inflammopharmacology 27, 663-677. https://doi.org/10.1007/s10787-019-00580-x
  14. Kim, S., Lee, M. S., Lee, B., Gwon, W. G., Joung, E. J., Yoon, N. Y. and Kim, H. R. (2014) Anti-inflammatory effects of sargachromenol-rich ethanolic extract of Myagropsis myagroides on lipopolysaccharide-stimulated BV-2 cells. BMC complement. Altern. Med. 14, 231. https://doi.org/10.1186/1472-6882-14-231
  15. Kim, S. K., Ko, Y. H., Lee, S. Y. and Jang, C. G. (2020) Memory-enhancing effects of 7,3',4'-trihydroxyisoflavone by regulation of cholinergic function and BDNF signaling pathway in mice. Food Chem. Toxicol. 137, 111160. https://doi.org/10.1016/j.fct.2020.111160
  16. Klus, K. and Barz, W. (1995) Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daidzein and glycitein by bacteria isolated from tempe. Arch. Microbiol. 164, 428-434. https://doi.org/10.1007/BF02529741
  17. Ko, Y. H., Kim, S. K., Kwon, S. H., Seo, J. Y., Lee, B. R., Kim, Y. J., Hur, K. H., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2019a) 7,8,4'-Trihydroxyisoflavone, a metabolized product of daidzein, attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y Cells. Biomol. Ther. (Seoul) 27, 363-372. https://doi.org/10.4062/biomolther.2018.211
  18. Ko, Y. H., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2018) 6,7,4'-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Eur. J. Pharmacol. 826, 140-147. https://doi.org/10.1016/j.ejphar.2018.02.048
  19. Ko, Y. H., Kwon, S. H., Kim, S. K., Lee, B. R., Hur, K. H., Kim, Y. J., Kim, S. E., Lee, S. Y. and Jang, C. G. (2019b) Protective effects of 6,7,4'-trihydroxyisoflavone, a major metabolite of daidzein, on 6-hydroxydopamine-induced neuronal cell death in SH-SY5Y human neuroblastoma cells. Arch. Pharm. Res. 42, 1081-1091. https://doi.org/10.1007/s12272-019-01191-4
  20. Kulling, S. E., Honig, D. M. and Metzler, M. (2001) Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. J. Agric. Food Chem. 49, 3024-3033. https://doi.org/10.1021/jf0012695
  21. Lammersfeld, C. A., King, J., Walker, S., Vashi, P. G., Grutsch, J. F., Lis, C. G. and Gupta, D. (2009) Prevalence, sources, and predictors of soy consumption in breast cancer. Nutr. J. 8, 2. https://doi.org/10.1186/1475-2891-8-2
  22. Li, N., Liu, B. W., Ren, W. Z., Liu, J. X., Li, S. N., Fu, S. P., Zeng, Y. L., Xu, S. Y., Yan, X., Gao, Y. J., Liu, D. F. and Wang, W. (2016) GLP-2 attenuates LPS-induced inflammation in BV-2 cells by inhibiting ERK1/2, JNK1/2 and NF-kappaB signaling pathways. Int. J. Mol. Sci. 17, 190. https://doi.org/10.3390/ijms17020190
  23. Lim, T. G., Lee, S. Y., Duan, Z., Lee, M. H., Chen, H., Liu, F., Liu, K., Jung, S. K., Kim, D. J., Bode, A. M., Lee, K. W. and Dong, Z. (2017) The prolyl isomerase Pin1 is a novel target of 6,7,4'-trihydroxyisoflavone for suppressing esophageal cancer growth. Cancer Prev. Res. (Phila.) 10, 308-318. https://doi.org/10.1158/1940-6207.CAPR-16-0318
  24. Lu, Y., An, Y., Lv, C., Ma, W., Xi, Y. and Xiao, R. (2018) Dietary soybean isoflavones in Alzheimer's disease prevention. Asia Pac. J. Clin. Nutr. 27, 946-954.
  25. Lull, M. E. and Block, M. L. (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7, 354-365. https://doi.org/10.1016/j.nurt.2010.05.014
  26. Mattson, M. P. (2005) NF-kappaB in the survival and plasticity of neurons. Neurochem. Res. 30, 883-893. https://doi.org/10.1007/s11064-005-6961-x
  27. Miguez, A. C., Francisco, J. C., Barberato, S. H., Simeoni, R., Precoma, D., Do Amaral, V. F., Rodrigues, E., Olandoski, M., de Noronha, L., Greca, F. H., de Carvalho, K. A., Faria-Neto, J. R. and Guarita-Souza, L. C. (2012) The functional effect of soybean extract and isolated isoflavone on myocardial infarction and ventricular dysfunction: the soybean extract on myocardial infarction. J. Nutr. Biochem. 23, 1740-1748. https://doi.org/10.1016/j.jnutbio.2011.05.017
  28. O'neill, L. A. and Kaltschmidt, C. (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 20, 252-258. https://doi.org/10.1016/S0166-2236(96)01035-1
  29. Pandur, E., Varga, E., Tamasi, K., Pap, R., Nagy, J. and Sipos, K. (2018) Effect of inflammatory mediators lipopolysaccharide and lipoteichoic acid on iron metabolism of differentiated SH-SY5Y cells alters in the presence of BV-2 microglia. Int. J. Mol. Sci. 20, 17. https://doi.org/10.3390/ijms20010017
  30. Park, J., Min, J. S., Kim, B., Chae, U. B., Yun, J. W., Choi, M. S., Kong, I. K., Chang, K. T. and Lee, D. S. (2015) Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kappaB pathways. Neurosci. Lett. 584, 191-196. https://doi.org/10.1016/j.neulet.2014.10.016
  31. Park, S. H., Lee, C. H., Lee, J. Y., Yang, H., Kim, J. H., Park, J. H. Y., Kim, J. E. and Lee, K. W. (2020) Topical application of 7,3',4'-trihydroxyisoflavone alleviates atopic dermatitis-like symptoms in NC/Nga mice. Planta Med. 86, 190-197. https://doi.org/10.1055/a-1068-7983
  32. Roh, C. (2014) Microbial transformation of bioactive compounds and production of ortho-dihydroxyisoflavones and glycitein from natural fermented soybean paste. Biomolecules 4, 1093-1101. https://doi.org/10.3390/biom4041093
  33. Rufer, C. E. and Kulling, S. E. (2006) Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J. Agric. Food Chem. 54, 2926-2931. https://doi.org/10.1021/jf053112o
  34. Salminen, A., Huuskonen, J., Ojala, J., Kauppinen, A., Kaarniranta, K. and Suuronen, T. (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflammaging. Ageing Res. Rev. 7, 83-105. https://doi.org/10.1016/j.arr.2007.09.002
  35. Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S. (2001) Molecular mechanisms underlying chemo-preventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481, 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  36. Villa, A., Vegeto, E., Poletti, A. and Maggi, A. (2016) Estrogens, neuro-inflammation, and neurodegeneration. Endocr. Rev. 37, 372-402. https://doi.org/10.1210/er.2016-1007
  37. Wu, P. S., Ding, H. Y., Yen, J. H., Chen, S. F., Lee, K. H. and Wu, M. J. (2018) Anti-inflammatory activity of 8-hydroxydaidzein in LPS-stimulated BV2 microglial cells via activation of Nrf2-antioxidant and attenuation of Akt/NF-kappaB-inflammatory signaling pathways, as well as inhibition of COX-2 activity. J. Agric. Food Chem. 66, 5790-5801. https://doi.org/10.1021/acs.jafc.8b00437
  38. Yuskaitis, C. J. and Jope, R. S. (2009) Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell. Signal. 21, 264-273. https://doi.org/10.1016/j.cellsig.2008.10.014

Cited by

  1. Noble 3,4-Seco-triterpenoid Glycosides from the Fruits of Acanthopanax sessiliflorus and Their Anti-Neuroinflammatory Effects vol.10, pp.9, 2021, https://doi.org/10.3390/antiox10091334
  2. Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer’s disease vol.53, pp.4, 2021, https://doi.org/10.1080/03602532.2021.1977316