DOI QR코드

DOI QR Code

Analysis of the characteristics of inertial sensors to detect position changes in a large space

넓은 공간에서 위치 변화를 감지하기위한 관성 센서의 특성 분석

  • Received : 2020.11.25
  • Accepted : 2021.03.05
  • Published : 2021.03.31

Abstract

Positioning systems have been actively researched and developed over the past few years and have been used in many applications. This paper presents a method to determine a location in a large space using a sensor system consisting of an accelerometer and a single-axis gyroscope. In particular, to consider usability, a sensor device was loosely worn on the waist so that the experimental data could be used in practical applications. Based on the experimental results of circular tracks with radiuses of 1m and 3m, in this paper, an algorithm using the threshold of rotation angle was proposed and applied to the experimental results. A tracking experiment was performed on the grid-pattern track model. For raw sensor data, the average deviation between the final tracking point and the target point was approximately 15.2 m, which could be reduced to approximately 4.0 m using an algorithm applying the rotation angle threshold.

위치 파악을 위한 시스템은 지난 몇 년 동안 적극적으로 연구 및 개발되었으며 많은 응용 분야에 적용되고 있다. 본 논문은 가속도계와 단일 축 자이로 스코프로 구성된 센서 시스템을 사용하여 실내와 실외의 넓은 공간에서 위치를 파악하는 방법을 제안한다. 가속도계와 자이로 스코프를 사용하여 사람의 움직임을 인식하는 시스템을 설계 한 후 기하학적 알고리즘을 센서 데이터에 적용하여 오차율을 줄이고자 하였다. 특히 활용성을 고려하기 위하여 센서 기기를 허리에 느슨하게 착용함으로써 실험 데이터가 실제 응용 분야에 유용하게 사용될 수 있도록 고려하였다. 반지름이 1m, 3m인 원형 트랙의 실험 결과를 바탕으로 본 논문에서는 회전 각도의 임계 값을 이용한 알고리즘을 제안하고 실험 결과에 적용하였다. 그리드 패턴 트랙 모델에 대한 추적 실험을 수행했으며, 최종 추적 지점과 목표 지점의 평균 편차는 원시 센서 데이터의 경우 약 15.2m로 확인 되었으며, 회전 각도 임계 값을 사용하는 알고리즘을 사용하여 약 4.0m로 줄일 수 있었다.

Keywords

References

  1. J. Xiao, Z. Liu, Y. Yang, D. Liu, X. Han, "Comparison and analysis of indoor wireless positioning techniques", International Conference on Computer Science and Service System, IEEE, Nanjing, China, pp. 293-296, June 2011. DOI: https://doi.org/10.1109/CSSS.2011.5972088
  2. R. Mautz, "Overview of current indoor positioning systems", Geodesy and Cartography, Vol. 35, No. 1, pp 18-22, March 2009. DOI: https://doi.org/10.3846/1392-1541.2009.35.18-22
  3. L. Coyle, S. Neely, P. Nixon, A. Quigley, "Sensor aggregation and integration in healthcare location based services", Pervasive Health Conference and Workshops, IEEE, Innsbruck, Austria, pp. 1-4, Nov. 2006. DOI: https://doi.org/10.1109/PCTHEALTH.2006.361698
  4. S. Dhar, U. Varshney, "Challenges and business models for mobile location-based services and advertising", Communications of the ACM, Vol. 54, No.5, pp.121-128, May 2011. DOI: https://doi.org/10.1145/1941487.1941515
  5. A. Bose and C. H. Foh, "A practical path loss model for indoor WiFi positioning enhancement," 6th International Conference on Information, Communications & Signal Processing, IEEE, Singapore, Singapore, pp. 1-5, Dec. 2007. DOI: https://doi.org/10.1109/ICICS.2007.4449717
  6. H. L. Dehghani, S. Golmohammadi, K. Shadi, "Extract Non-Line-of-Sight state of base stations and error mitigation technique for wireless localization in micro-cell networks," Computer Communications, Vol. 35, No. 7, pp. 885-893, Feb. 2012. DOI: https://doi.org/10.1016/j.comcom.2012.01.021
  7. R. Sekhar, R. K. Musalay, Y. Krishnamurthy and B. Shreenivas, "Inertial sensor based wireless control of a robotic arm," IEEE International Conference on Emerging Signal Processing Applications, IEEE, NV, USA, pp. 87-90, Jan. 2012. DOI: https://doi.org/10.1109/ESPA.2012.6152452
  8. X. Yun, J. Calusdian, E. R. Bachmann, and R. B. McGhee, "Estimation of Human Foot Motion During Normal Walking Using Inertial and Magnetic Sensor Measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 7, July 2012. DOI: https://doi.org/10.1109/TIM.2011.2179830
  9. G. To, M. R. Mahfouz, "Design of Wireless Inertial Trackers for Human Joint Motion Analysis," IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, IEEE, CA, USA, pp. 49-52, Jan. 2012. DOI: https://doi.org/10.1109/BioWireless.2012.6172737