DOI QR코드

DOI QR Code

A Self-Service Business Intelligence System for Recommending New Crops

재배 작물 추천을 위한 셀프서비스 비즈니스 인텔리전스 시스템

  • Kim, Sam-Keun (School of Computer Engineering & Applied Mathematics, Hankyong National University) ;
  • Kim, Kwang-Chae (School of Computer Engineering & Applied Mathematics, Hankyong National University) ;
  • Kim, Hyeon-Woo (School of Computer Engineering & Applied Mathematics, Hankyong National University) ;
  • Jeong, Woo-Jin (School of Computer Engineering & Applied Mathematics, Hankyong National University) ;
  • Ahn, Jae-Geun (School of Computer Engineering & Applied Mathematics, Hankyong National University)
  • 김삼근 (한경대학교 컴퓨터응용수학부(컴퓨터시스템연구소)) ;
  • 김광채 (한경대학교 컴퓨터응용수학부(컴퓨터시스템연구소)) ;
  • 김현우 (한경대학교 컴퓨터응용수학부(컴퓨터시스템연구소)) ;
  • 정우진 (한경대학교 컴퓨터응용수학부(컴퓨터시스템연구소)) ;
  • 안재근 (한경대학교 컴퓨터응용수학부(컴퓨터시스템연구소))
  • Received : 2020.12.21
  • Accepted : 2021.03.05
  • Published : 2021.03.31

Abstract

Traditional business intelligence (BI) systems have been used widely as tools for better decision-making on time. On the other hand, building a data warehouse (DW) for the efficient analysis of rapidly growing data is time-consuming and complex. In particular, the ETL (Extract, Transform, and Load) process required to build a data warehouse has become much more complex as the BI platform moves to a cloud environment. Various BI solutions based on the NoSQL database, such as MongoDB, have been proposed to overcome these ETL issues. Decision-makers want easy access to data without the help of IT departments or BI experts. Recently, self-service BI (SSBI) has emerged as a way to solve these BI issues. This paper proposes a self-service BI system with farming data using the MongoDB cloud as DW to support the selection of new crops by return-farmers. The proposed system includes functions to provide insights to decision-makers, including data visualization using MongoDB charts, reporting for advanced data search, and monitoring for real-time data analysis. Decision makers can access data directly in various ways and can analyze data in a self-service method using the functions of the proposed system.

전통적인 BI(Business Intelligence) 시스템은 제 시간에 더 나은 의사결정을 위한 도구로 널리 사용되어 왔다. 그러나 급증하는 데이터에 대한 효율적 분석을 위해 데이터 웨어하우스를 구축하는 일은 시간이 오래 걸리고 복잡하다. 특히, 데이터 웨어하우스 구축에 요구되는 ETL(Extract, Transform, Load) 프로세스는 BI 플랫폼이 클라우드 환경으로 전환되면서 훨씬 더 복잡해졌다. 이러한 ETL 이슈를 극복하기 위해 MongoDB와 같은 NoSQL 데이터베이스에 기반한 다양한 BI 솔루션들이 제안되었다. 한편, 의사 결정권자는 IT 부서나 BI 전문가 의 도움 없이 데이터에 쉽게 접근할 수 있기를 원한다. 최근, 이러한 BI 이슈들을 해결하기 위한 방안으로 셀프서비스 BI가 등장하였다. 본 논문에서는 귀농 귀촌인의 재배 작물 선택을 지원하기 위해 MongoDB 클라우드를 데이터 웨어하우스로 하는 농업 데이터 기반의 셀프서비스 BI 시스템을 제안한다. 제안 시스템은 의사 결정권자에게 통찰력을 제공하기 위해 MongoDB 차트를 이용한 데이터 시각화 기능, 고급 데이터 검색을 위한 리포팅 기능, 실시간 데이터 분석을 위한 모니터링 기능을 지원한다. 의사 결정권자는 다양한 방식으로 데이터에 직접 접근할 수 있고, 제안 시스템의 기능들을 활용하여 셀프서비스 방식으로 데이터를 분석할 수 있다.

Keywords

References

  1. Claudia Imhoff and Colin White, "Self-service Business Intelligence", Empowering Users to Generate Insights, TDWI Best practices report, TWDI, Renton, WA, 2011, https://docs.media.bitpipe.com/io_10x/io_106625/item_583281/TDWI_Best_Practices_Report_Self-Service_BI_Q311%5B1%5D.pdf
  2. Logi Analytics, "State of Self Service BI Report", 2015, https://www.logianalytics.com/wp-content/uploads/2015/11/2015-State-of-Self-Service-BI-Report.pdf.
  3. Kenneth C. Laudon and Jane P. Laudon, Essentials of MIS, Pearson Education, 2017.
  4. etl-tools.info, https://etl-tools.info/
  5. ETL & Data Warehousing Explained, https://www.xplenty.com/blog/etl-data-warehousingexplained-etl-tool-basics/.
  6. Reducing the Need for ETL with MongoDB Charts, https://www.mongodb.com/blog/post/reducing-the-need-for-etl-with-mongodb-charts.
  7. Paul Alpar and Michael Schulz, "Self-Service Business Intelligence," Business & Information Systems Engineering: Vol. 58: Iss. 2, pp. 151-155, 2016, https://aisel.aisnet.org/bise/vol58/iss2/5. https://doi.org/10.1007/s12599-016-0424-6
  8. Christian Lennerholt, Joeri van Laere, Eva Soderstrom, "Implementation Challenges of Self Service Business Intelligence: A Literature Review", Proceedings of the 51st Hawaii International Conference on System Sciences, vol. 51, pp. 5055-5063, 2018, http://hdl.handle.net/10125/50520.
  9. MongoDB, https://www.mongodb.com/.
  10. AWS Glue: Amazon's New ETL Tool, https://www.knowi.com/blog/aws-glue-etl/.
  11. Knowi, https://www.knowi.com/.
  12. Dremio, https://www.dremio.com/.
  13. MongoDB Charts, https://www.mongodb.com/products/charts.
  14. MongoDB Atlas, https://www.mongodb.com/cloud/atlas.
  15. The Best Self-Service Business Intelligence (BI), https://www.pcmag.com/picks/the-best-self-service-business-intelligence-bi-tools.
  16. Self-Service BI: An Overview, Available From: https://bi-survey.com/self-service-bi.
  17. Gartner, Available From: https://www.gartner.com/en/information-technology/glossary/self-service-business-intelligence.
  18. David Stodder, "Visual Analytics for Making Smarter Decisions Faster Applying Self-Service Business Intelligence Technologies to Data-Driven Objectives", TDWI Best Practices Report, 2015, Available From: https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper2/tdwi-visual-analytics-making-smarter-decisions-107939.pdf.
  19. Ministry of Agriculture, Food and Rural Affairs, https://www.korea.kr/news/pressReleaseView.do?newsId=156397994.
  20. Saso Celarc and Mojca Gros, "Calculation of the water balance and analysis of agriculture drought data using a Business Intelligence (BI) system", GIL Jahrestagung, pp. 35-38, 2013, https://subs.emis.de/LNI/Proceedings/Proceedings211/35.pdf.
  21. I. Wisnubhadra, S. P. Adithama, S. S. K. Baharin and N. S. Herman, "Agriculture Spatiotemporal Business Intelligence using Open Data Integration," 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, pp. 534-539, 2019. DOI: https://dx.doi.org/10.1109/ISRITI48646.2019.9034635
  22. Guhyun Jung, Myounghee Jeon, Jinhong Lee, Heundong Park, Seyong Lee, and Joonyong Kim, "Developing a decision support system for selecting new crops", Agribusiness and Information Management, Vol.10, No.2, pp. 8-17, 2018. http://db.koreascholar.com/article.aspx?code=366098 https://doi.org/10.14771/aim.10.2.2
  23. Grujica Vico, Danijel Mijic, and Radomir Bodiroga, "Business Intelligence in Agriculture - A Practical Approach", AGRI BASE, 2019. DOI: https://dx.doi.org/10.13140/RG.2.2.18626.43204
  24. General Center for Return to Farming and Rural Areas, https://www.returnfarm.com:444/.
  25. Food, Agriculture, Forestry and Fisheries Education and Culture Information Service, https://www.epis.or.kr/.
  26. Agricultural Technology Portal Nongsaro, https://www.nongsaro.go.kr/portal/portalMain.ps?menuId=PS00001