DOI QR코드

DOI QR Code

Development of Underwater Positioning System using Asynchronous Sensors Fusion for Underwater Construction Structures

비동기식 센서 융합을 이용한 수중 구조물 부착형 수중 위치 인식 시스템 개발

  • Received : 2020.12.08
  • Accepted : 2021.03.05
  • Published : 2021.03.31

Abstract

An underwater positioning method that can be applied to structures for underwater construction is being developed at the Korea Institute of Ocean Science and Technology. The method uses an extended Kalman filter (EKF) based on an inertial navigation system for precise and continuous position estimation. The observation matrix was configured to be variable in order to apply asynchronous measured sensor data in the correction step of the EKF. A Doppler velocity logger (DVL) can acquire signals only when attached to the bottom of an underwater structure, and it is difficult to install and recover. Therefore, a complex sensor device for underwater structure attachment was developed without a DVL in consideration of an underwater construction environment, installation location, system operation convenience, etc.. Its performance was verified through a water tank test. The results are the measured underwater position using an ultra-short baseline, the estimated position using only a position vector, and the estimated position using position/velocity vectors. The results were compared and evaluated using the circular error probability (CEP). As a result, the CEP of the USBL alone was 0.02 m, the CEP of the position estimation with only the position vector corrected was 3.76 m, and the CEP of the position estimation with the position and velocity vectors corrected was 0.06 m. Through this research, it was confirmed that stable underwater positioning can be carried out using asynchronous sensors without a DVL.

한국해양과학기술원에서는 수중 공사용 구조물에 적용할 수 있는 수중 위치 인식 기술을 개발하고 있다. 정밀한 위치 인식을 위해 관성 항법을 기반으로 한 확장 칼만 필터를 사용하였으며, 비동기화 된 센서들의 데이터를 알고리즘 보정 단계에 적용하기 위하여 내부의 관측 행렬을 데이터에 따라 구분하여 업데이트 하였다. 수중 공사 환경, 설치 위치, 시스템 운용 편의성 등을 종합적으로 고려하여 수중 공사 구조물 하부에 붙여야 신호를 획득할 수 있는 Doppler velocity logger(DVL)는 설치 및 회수가 어렵기 때문에 이를 배제한 수중 공사 구조물 부착용 수중 위치 인식 복합 시험체를 제작하였으며 수조 환경에서 수중 위치 인식 성능 시험을 수행하였다. Ultra short-base line(USBL)로 측정된 수중 위치, 위치 벡터만 보정된 추정 위치, 그리고 위치와 속도 벡터를 보정한 추정 위치 결과를 원형 공산 오차(CEP)를 이용하여 비교 및 평가하였다. 그 결과 USBL 단독 위치 추정 CEP 0.02 m, 위치 벡터만 보정한 추정 위치 CEP 3.76 m., 위치 및 속도 벡터를 보정한 추정 위치 CEP 0.06 m로 평가되었다. 본 연구를 통해 DVL이 미적용된 비동기식 센서들을 이용하여 안정적인 수중 위치를 추정할 수 있음을 확인하였다.

Keywords

References

  1. Z. Ma, Y. Ren, "Integrated Application of BIM and GIS: An Overview", Procedia Engineering, Vol. 196, pp.1072-1079, Jun. 2017. DOI: https://doi.org/10.1016/j.proeng.2017.08.064
  2. Wikipedia, the free encyclopedia "Underwater acoustic positioning system", [cited 2020 September 17], Available From: https://en.wikipedia.org/wiki/Underwater_acoustic_positioning_system (accessed Oct. 2020)
  3. A. Tomczak, "Modern Methods of Underwater Positioning Applied in Subsea Mining", Gornictwo i Geoinzynieria, Vol. 35, No. 4/1, pp.381-394, 2011.
  4. M. Morgado, P. Oliveira, C. Silvestre, J. F. Vasconcelos, "USBL/INS Integration Technique for Underwater Vehicles", Proceedings of the 7th IFAC Conference on Manoeuvring and Control of Marine Craft, International Federation of Automatic Control(IFAC), Lisbon, Portugal, Sep. 2006.
  5. L. Zhou, A Precise Underwater Acoustic Positioning Method Based on Phase Measurement, Master's thesis, University of Victoria, pp.2-3, 2010
  6. H. Liu, Z. Wang, R. Shan, K. He and S. Zhao, "Research into the integrated navigation of a deep sea towed vehicle with USBL/DVL and pressure gauge", Applied Acoustics, Vol. 159, No. 2, 2020. DOI: https://doi.org/10.1016/j.apacoust.2019.107052
  7. H. M. Manik, D. A. Gultom, Firdaus, L. Elson, "Evaluation of ADCP backscatter computation for quantifying suspended sediment concentration", IOP Conference Series: Earth and Environmental Science, Vol. 429, Feb. 2020 DOI: https://doi.org/10.1088/1755-1315/429/1/012035
  8. K. H. Kim, H. T. Choi, S. M. Kim, P. M. Lee, C. M. Lee, S. K. Cho, "Implementation of Deep-sea UUV precise Underwater Navigation based on Multiple Sensor Fusion", Journal of Ocean Engineering and Technology, Vol. 24, No.3, pp.46-51, 2010.
  9. P. M. Lee, H. W. Shim, H. Baek, B. H. Kim, J. Y. Park, B. H. Jun, S. Y. Yoo, "Navigation System for a Deep-sea ROV Fusing USBL, DVL, and Heading Measurements", Journal of Ocean Engineering and Technology, Vol. 31, No. 4, pp.315-323, 2017. DOI: https://doi.org/10.26748/KSOE.2017.08.31.4.315
  10. B. Allotta, R. Costanzi, E. Meli, L. Pusi, A. Ridolfi, G. Vettori, "Cooperative localization of a team of AUVs by a tetrahedral configuration", Robotics and Autonomous Systems, Vol. 62, No. 8, pp.1228-1237, 2014. DOI: https://doi.org/10.1016/j.robot.2014.03.004
  11. A. Noureldin, T. B. Karamat and J. Georgy, Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration, p.313, Springer, 2013, pp.167-200
  12. M. Zhang, K. Li, B. Hu and C. Meng, "Comparison of Kalman Filters for Inertial Integrated Navigation", Sensors, Vol. 19, No. 6, 2019. DOI: https://doi.org/10.3390/s19061426