DOI QR코드

DOI QR Code

A Study on the Generation of Stable Negative Voltage for IT Equipments

IT기기를 위한 안정된 마이너스 전압 생성에 관한 연구

  • Lee, Hyun-Chang (Division of Information & Telecommunication, Kongju National University)
  • Received : 2021.02.02
  • Accepted : 2021.03.20
  • Published : 2021.03.28

Abstract

In this paper, a method of constructing an inverter circuit that can generate negative voltage required to operate an IT device in a stable using an inexpensive buck device is presented. To do this, the problem of constructing the inverter circuit using the existing buck device was examined, the principle that could prevent this problem was analyzed, and a circuit that could solve this problem was presented. In order to prove the effectiveness of the proposed method, the experimental circuit was constructed and the experiment was conducted. Compared to the operation of the inverter circuit by the existing overcurrent prevention circuit, it was confirmed that the stable operation was performed without an overcurrent phenomenon. Accordingly, it is expected that the performance of the circuit can be greatly improved while a number of peripheral devices for configuring the devices for processing various analog signals used in IT devices as a single power supply can be omitted.

본 논문에서는 IT기기를 가동하기 위해 필요한 마이너스 전원을 저렴한 buck 소자를 이용해 안정된 방법으로 생성할 수 있는 inverter회로의 구성방법을 제시하였다. 이를 위해 기존의 buck 소자를 이용해 inverter 회로를 구성했을 경우의 문제점에 관해 살펴보고, 이러한 문제점을 방지할 수 있는 원리를 분석하고 해결할 수 있는 회로를 제시하였다. 제시한 방법의 효과를 입증하기 위해 실험회로를 구성하고 실험을 진행한 결과, 기존의 과전류 방지회로에 의한 inverter회로의 기동에 비해 과전류현상 없이 안정된 기동이 이루어짐을 확인하였다. 이에 따라 IT 기기에 사용되는 각종 아날로그 신호 처리를 위한 소자들을 편전원으로 구성하기 위한 수많은 주변소자들이 모두 생략될 수 있으면서도 회로의 성능을 크게 향상시킬 수 있을 것으로 기대된다.

Keywords

References

  1. W. Emest. (1979). Booster-inverter power supply circuit. US patient US4245285A.
  2. K. Hosokawa, R. Kudo, T. Nagasawa & K. Tateno. (2004). Switching power supply device and a semiconductor integrated circuit. US patient US7514908B2.
  3. X. Li, Z. Yan, Y. Gao & H. Qi. (2013). The Research of Three-phase Boost/Buck-boost DC-AC Inverter, Scientific Research, 906-913. DOI : 10.4236/epe.2013.54B174
  4. Y. P. Tsividis & P. R. Gray. (1976). An integrated NMOS operational amplifier with internal compensation, IEEE Journal of Solid- State Circuits, 11(6), 748-753. DOI : 10.1109/JSSC.1976.1050813
  5. S. Luschas, R. Schreier & H. S. Lee. (2004). Radio frequency digital-to-analog converter, IEEE Journal of Solid-State Circuits, 39(9), 1462-1467. DOI : 10.1109/JSSC.2004.829377
  6. S. Saggini, E. Orietti, P. Mattavelli, A. Pizzutelli & A. Bianco. (2008). Fully-digital hysteretic voltage-mode control for dc-dc converters based on asynchronous sampling, 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition. DOI : 10.1109/APEC.2008.4522768
  7. W. Kester, B. Erisman & G. Thandi. (n. d.) Switched capacitor Voltage converters, 4.1-4.21. Analog Devices. (Online), http://analog.com/media/en/training-seminars/design-handbooks/Practical-Design-Techniques-Power-Thermal/Section4.pdf
  8. Texas Instruments. (2014). MAX232x Dual EIA-232 Drivers/Receivers. (Online). http://ti.com/lit/ds/symlink/max232.pdf
  9. Texas Instruments. (2005). TL497A - 500mA Peak Step-up, Step-down, Inverting Switching voltage regulator. (Online). http://ti.com/lit/ds/symlink/tl497a.pdf
  10. Texas Instruments. (2020). LM2576xx Series Simple Switcher 3-A Step-Down Voltage Regulator. (Online). http://ti.com/lit/ds/symlink/lm2576.pdf
  11. H. I. Jun & H. C. Lee. (2020). Analysis of Problems when Generating Negative Power for IT devices. Journal of Software Assessment and Valuation, 16(2), 109-115. DOI : 10.29056/jsav.2020.12.12
  12. A. Malvino & D. J. Bates. (2016). Electronic Principles - Eighth Edition. New York: McGraw-Hill Education.