DOI QR코드

DOI QR Code

A Study on the Comparison and Semantic Analysis between SNS Big Data, Search Portal Trends and Drug Case Statistics

SNS 빅데이터 및 검색포털 트렌드와 마약류 사건 통계간의 비교 및 의미분석 연구

  • Choi, Eunjung (Department of Information Security, Seoul Women's University) ;
  • Lee, SuRyeon (Department of Information Security, Seoul Women's University) ;
  • Kwon, Hyemin (Department of Information Security, Seoul Women's University) ;
  • Kim, Myuhngjoo (Department of Information Security, Seoul Women's University) ;
  • Lee, Insoo (Digital Investigations Division, Supreme Prosecutor's Office) ;
  • Lee, Seunghoon (Digital Investigations Division, Supreme Prosecutor's Office)
  • 최은정 (서울여자대학교 정보보호학과) ;
  • 이수련 (서울여자대학교 정보보호학과) ;
  • 권혜민 (서울여자대학교 정보보호학과) ;
  • 김명주 (서울여자대학교 정보보호학과) ;
  • 이인수 (대검찰청 디지털수사과) ;
  • 이승훈 (대검찰청 디지털수사과)
  • Received : 2020.11.20
  • Accepted : 2021.02.20
  • Published : 2021.02.28

Abstract

SNS data can catch the user's thoughts and actions. And the trend of the search portal is a representative service that can observe the interests of users and their changes. In this paper, the relationship was analyzed by comparing statistics on narcotics incidents and the degree of exposure to narcotics related words in tweets of SNS and in the trends of search portal. It was confirmed that the trend of SNS and search portal trends was the same in the statistics of the prosecution office with a certain time difference.In addition, cluster analysis was performed to understand the meaning of tweets in which narcotics related words were mentioned. In the 50,000 tweets collected in January 2020, it was possible to find meaning related to the sale of actual drugs. Therefore, through SNS monitoring alone it is possible to monitor narcotics-related incidents and to find specific sales or purchase-related information, and this can be used in the investigation process. In the future, it is expected that crime monitoring and prediction systems can be proposed as related crime analysis may be possible not only with text but also images.

SNS는 데이터를 통해 사용자의 생각이나 행동을 파악할 수 있고 검색포털의 트렌드는 사용자들의 관심사와 그 변화를 파악할 수 있는 대표적인 서비스이다. 본 논문에서는 SNS의 트윗과 검색포털 트렌드에 마약류관련 단어 노출정도와 마약류 사건 통계와의 비교분석을 수행하여 관계를 분석하였다. SNS와 검색 포털 트렌드의 추이가 일정한 시차를 두고 검찰청 통계에도 동일하게 나타난 것을 확인할 수 있었다. 또한 마약류관련 단어들이 언급된 트윗들에 대한 의미를 파악하기 위해 군집분석을 수행하였다. 2020년 10월에 수집된 5만건 트윗에서는 실제 마약류의 판매에 관련된 의미를 찾을 수 있었다. 이를 통해 SNS모니터링만으로도 마약류관련 사건에 대한 모니터링이 가능하고 구체적 판매 또는 구매관련한 정보를 찾을 수 있고 수사과정에 활용할 수 있다. 추후에는 텍스트뿐 아니라 이미지로 나타나는 관련 범죄사항을 파악할 수 있고 범죄모니터링 및 예측시스템을 제안할 수 있다.

Keywords

References

  1. Yoon, H. M. & Choi, E. J. (2019) A Study on Sentiment Analysis of Media and SNS response to National Policy: focusing on policy of Child allowance, Childbirth grant, Journal of Digital Convergence, 17(2), 195-200. DOI:10.14400/JDC.2019.17.2.195
  2. Kim, C. W, & Bae, G. B. (2019). The trend Analysis and Following Core Issue of Korean Gender Conflict Using Social Big Data. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 9(2), 441-450. DOI:10.21742/AJMAHS.2019.02.44
  3. Lee, S. R, & Choi, E. J. (2020). Comparison of responses to issues in SNS and Traditional Media using Text Mining -Focusing on the Termination of Korea-Japan General Security of Military Information Agreement(GSOMIA)-. Journal of Digital Convergence, 18(2), 277-284. DOI:10.14400/JDC.2020.18.2.277
  4. Seo, D. H, Kim, J. H. & Kim, C. K. (2018). Issue tracking and voting rate prediction for 19th Korean president election candidates. Journal of Intelligence and Information Systems, 24(3), 199-219. https://doi.org/10.13088/jiis.2018.24.3.199
  5. Park, S., & Kim, M. J. (2018). Prediction improvement of election polls by unstructured data analysis. The Korean Journal of applied Statistics, 31(5), 655-665. DOI:10.5351/KJAS.2018.31.5.655
  6. Lee, Y. N., Choi, E. J. & Kim, M. J. (2018). Analysis of the Influence of Presidential Candidate's SNS Reputation on Election Result: focusing on 19th Presidential Election. Journal of Digital Convergence, 16(2), 195-201. DOI:10.14400/JDC.2018.16.2.195
  7. Bolla, R. A. (2014). Crime pattern detection using online social media. Dissertation, ProQuest Dissertations Publishing.
  8. Chen X, Cho Y, Jang SY (2015) Crime prediction using Twitter sentiment and weather. SIEDS:63-68. DOI: 10.1109/sieds.2015.7117012.
  9. Pina-Garcia, C. A., & Ramirez-Ramirez, L. (2019). Exploring crime patterns in mexico city. Journal of Big Data, 6(1), 1-21. DOI:10.1186/s40537-019-0228-x
  10. Prosecution Service. (2020). Monthly trends of drug offenders. Prosecution Service. https://www.spo.go.kr/site/spo/ex/board/List.do?cbIdx=1201
  11. Anonymous. (2012) International journal of advanced research in computer engineering & technology. http://ijarcet.org/index.php/ijarcet/index.
  12. Wang, X., Gerber, M. S., & Brown, D. E. (2012). Automatic crime prediction using events extracted from twitter posts. Berlin, Heidelberg: Springer Berlin Heidelberg. DOI:10.1007/978-3-642-29047-3_28
  13. Kim, Y., & Kang, H. (2016). An analysis of relationship between word frequency in social network service data and crime occurences. KIPS Transactions on Computer and Communication Systems, 5(9), 229-236. DOI:10.3745/KTCCS.2016.5.9.229
  14. Hannach, H. E., & Benkhalifa, M. (2018). WordNet based implicit aspect sentiment analysis for crime identification from twitter. International Journal of Advanced Computer Science & Applications, 9(12) DOI:10.14569/IJACSA.2018.091222
  15. Dhavase, N., & Bagade, A. M. (2014). Location identification for crime & disaster events by geoparsing twitter. International Conference for Convergence for Technolohy, 1-3. DOI:10.1109/i2ct.2014.7092336
  16. Mohler, G. (2014). Marked point process hotspot maps for homicide and gun crime prediction in chicago. International Journal of Forecasting, 30(3), 491-497. DOI:10.1016/j.ijforecast.2014.01.004
  17. Shin, M., Park, M., & Bae, S. (2017). Nano technology trend analysis using google trend and data mining method for nano-informatics. Journal of Society of Korea Industrial and Systems Engineering, 40(4), 237-245. DOI:10.11627/jkise.2017.40.4.237
  18. Kim, J. H, Lee, B. W, & Yu, J. P. (2018). Forecasting Company Sales and Stock Price Using Google Trend: Focusing on the Keywords of BMW and Mercedes-Benz. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 8(10), 491-501. DOI:10.35873/ajmahs.2018.8.10.048
  19. Lee, G. C. & Yoon, S. W. (2018). Smart Speaker Market Analysis and Forecast using Google Trends. KIISE Transactions on Computing Practices, 24(11), 596-602. DOI:10.5626/KTCP.2018.24.11.596