DOI QR코드

DOI QR Code

A Study on Trend Analysis in Convergence Research Applying Word Cloud in Korea

워드 클라우드 기법을 이용한 국내 융복합 학술연구 트렌드 분석

  • Kim, Joon-Hwan (Department of Paideia, Sungkyul University) ;
  • Mun, Hyung-Jin (Department of Information & Communication Engineering, Sungkyul University) ;
  • Lee, Hang (Department of Economics, Gachon University)
  • 김준환 (성결대학교 파이데이아학부) ;
  • 문형진 (성결대학교 정보통신공학과) ;
  • 이항 (가천대학교 경제학과)
  • Received : 2021.01.17
  • Accepted : 2021.02.20
  • Published : 2021.02.28

Abstract

The convergence trend is the core of the 4th industrial revolution, and due to such expectations and possibilities, various countermeasures are being sought in diverse fields. This study conducted a quantitative analysis to identify the trend of convergence research over the past 10 years. Specifically, major research keywords were extracted, word cloud techniques were applied, and visualized to identify trends in academic research on convergence. To this end, research papers from 2012 to 2020 published in journal of digital convergence were investigated. The analysis period was divided into two periods: the former 4 years(2012-2015) and the latter 4 years(2016-2019) to confirm the difference in research trends. In addition, the research papers of 2020 were analyzed in order to more clearly understand the changes in the research trend of the last year due to the COVID-19. The results of this study are significant in that they can be used as useful basic data for future research and to understand research trends as keywords in the field of convergence.

융복합 트렌드는 4차 산업혁명의 핵심이며, 이런 기대와 가능성으로 인해 여러 분야에서 다양한 대응책이 모색되고 있다. 본 연구는 최근 10년 간 융복합 연구동향을 파악하기 위하여 정량적인 분석을 시행하였다. 구체적으로 주요 연구의 키워드를 추출하여, 워드 클라우드 기법을 적용하고 시각화하여 융복합에 대한 학술 연구동향을 파악하였다. 이를 위해 '디지털융복합연구'에 게재된 2012년-2020년간의 연구논문을 대상으로 조사하였다. 분석기간은 전반부 4년(2012년-2015년)과 후반부 4년(2016년-2019년) 두 기간으로 나눠서 비교분석하여 연구동향의 차이를 확인하였다. 추가적으로 코로나19 사태로 인한 최근 1년의 연구동향에 대한 변화를 보다 명확하게 파악하기 위해 2020년의 연구논문들을 대상으로 분석하였다. 본 연구의 결과는 융복합 분야의 핵심 주제어로 연구동향을 파악하고 추후 연구를 위한 유용한 기초자료로 활용될 수 있다는 점에서 의의를 갖는다.

Keywords

References

  1. J. Lind. (2005). Ubiquitous Convergence: market redefinitions generated by technological change and the Industry Life Cycle. In DRUID Academy Winter 2005 Conference. 27-29.
  2. W. J. Lee (2020). A Study on Word Cloud Techniques for Analysis of Unstructured Text Data. The Journal of Convergence on Culture Technology, 6(4), 715-720. https://doi.org/10.17703/JCCT.2020.6.4.715
  3. E. Y. Lee, K. H. Chu & D. H. Lee. (2019). A Study on Recent Trend Analysis in Consumer Research Applying Word Cloud. Journal of Product Research, 37(1), 1-7. DOI : 10.36345/kacst.2019.37.1.001
  4. J. Y. Lee, J. Y. Moon & H. J. Kim. (2007). Examining the intellectual structure of records management & archival science in Korea with text mining. Journal of the Korean Society for Library and Information Science. 41(1), 345-372. DOI : 10.4275/KSLIS.2007.41.1.345
  5. E. G. Seo. (2010). Trends analysis on research articles in the Journal of Korean Society for Information Management. Journal of the Korean Society for Information Management. 27(4), 7-31. DOI : 10.3743/KOSIM.2010.27.4.007
  6. J. Cho. (2011). A study for research area of library and information science by network text analysis. Journal of the Korean Society for Information Management. 28(4), 65-83. DOI : 10.3743/KOSIM.2011.28.4.065
  7. J. H. Park & M. Song, (2013). A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling. Journal of the Korean Society for Information Management, 30(1), 7-32. DOI : 10.3743/KOSIM.2013.30.1.007
  8. Y, J. Han. (2016). Research Trend of Entrepreneurship in Korea. Journal of Digital Convergence, 14(12), 121-131. DOI : 10.14400/JDC.2016.14.12.121
  9. Y. J. Son & S. K. Lee. (2019). Analysis of research trends on mobile health intervention for Korean patients with chronic disease using text mining. Journal of Digital Convergence, 17(4), 121-131. DOI : 10.14400/JDC.2019.17.4.211
  10. Y. P. Zhu & H. W. Park. (2019). Evaluating blockchain research trend using bibliometricsbased network analysis. Journal of Digital Convergence, 17(6), 219-227. DOI : 10.14400/JDC.2019.17.6.219
  11. N. Y. Lee, J. H. Kim & W. S. Lee. (2019). Exploration of Emotional Labor Research Trends in Korea through Keyword Network Analysis. Journal of Convergence for Information Technology, 9(3), 68-74. DOI : 10.22156/CS4SMB.2019.9.3.068
  12. M. S. Lee & W. S. Lee. (2020). A study on difference on gentrification perspectives: Comparison with the study of tourism and non-tourism. Journal of Hospitality and Tourism, 29(4), 229-243. DOI : 10.24992/KJHT.2020.06.29.04.229
  13. M. G. Kim. (2020). Examining popular key words listed for Airbnb properties using word cloud analysis. Korean Journal of Hospitality and Tourism, 29(4), 347-363. DOI : 10.24992/KJHT.2020.06.29.04.347
  14. B. E. Seo & C. M. Lee. (2014). Keyword Analyses of Diaspora Research and Its Trends in Korea. Journal of Diaspora Studies, 8(1), 43-69.
  15. S. Y. Kwon. (2014). A Study on the Application to Network Analysis on the Importance of Author Keyword based on the Position of Keyword. Journal of the Korean Society for Information Management, 31(2), 121-142. DOI : 10.3743/KOSIM.2014.31.2.121