DOI QR코드

DOI QR Code

Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation

  • Kim, Min Jeong (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • Shim, Chang Ki (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • Park, Jong-Ho (Organic Agriculture Division, National Institute of Agricultural Sciences)
  • 투고 : 2021.09.06
  • 심사 : 2021.10.10
  • 발행 : 2021.12.01

초록

Although late blight is an important disease in ecofriendly potato cultivation in Korea, it is highly dependent on the use of eco-friendly agricultural materials and the development of biological control technology is low. It is a necessary to develop an effective biocontrol agent to inactivate late blight in the field. AFB2-2 strain is a gram-positive with peritrichous flagella. It can utilize 20 types of carbon sources, like L-arabinose, and D-trehalose at 35℃. The optimal growth temperature of the strain is 37℃. It can survive at 20-50℃ in tryptic soy broth. The maximum salt concentration tolerated by AFB2-2 strain is 7.5% NaCl. AFB2-2 strain inhibited the mycelial growth of seven plant pathogens by an average inhibitory zone of 10.2 mm or more. Among the concentrations of AFB2-2, 107 cfu/ml showed the highest control value of 85.7% in the greenhouse. Among the three concentrations of AFB2-2, the disease incidence and severity of potato late blight at 107 cfu/ml was lowest at 0.07 and 6.7, respectively. The nucleotide sequences of AFB2-2 strain were searched in the NCBI GenBank; Bacillus siamensis strain KCTC 13613, Bacillus velezensis strain CR-502, and Bacillus amyloliquefaciens strain DSM7 were found to have a genetic similarity of 99.7%, 99.7%, and 99.5%, respectively. The AFB2-2 strain was found to harbor the biosynthetic genes for bacillomycin D, iturin, and surfactin. Obtained data recommended that the B. velezensis AFB2-2 strain could be considered as a promising biocontrol agent for P. infestans in the field.

키워드

과제정보

This study was carried out with the support of the Research Program for Agricultural Science & Technology Development (Project No. PJ01587602) funded by the Rural Development Administration in the Republic of Korea in 2021.

참고문헌

  1. Abd El-Daim, I. A., Bejai, S. and Meijer, J. 2014. Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379:337-350. https://doi.org/10.1007/s11104-014-2063-3
  2. Ali, S. Z., Sandhya, V., Grover, M., Kishore, N., Rao, L. V. and Venkateswarlu, B. 2009. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils. 46:45-55. https://doi.org/10.1007/s00374-009-0404-9
  3. Ali, S. Z., Sandhya, V., Grover, M., Linga, V. R. and Bandi, V. 2011. Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J. Plant Interact. 6:239-246. https://doi.org/10.1080/17429145.2010.545147
  4. Asaturova, A., Shternshis, M., Tsvetkova, V., Shpatova, T., Maslennikova, V., Zhevnova, N. and Homyak, A. 2021. Biological control of important fungal diseases of potato and raspberry by two Bacillus velezensis strains. PeerJ 9:e11578. https://doi.org/10.7717/peerj.11578
  5. Athukorala, S. N. P., Fernando, W. G. D. and Rashid, K. Y. 2009. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can. J. Microbiol. 55:1021-1032. https://doi.org/10.1139/W09-067
  6. Buck, J. D. 1982. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl. Environ. Microbiol. 44:992-993. https://doi.org/10.1128/aem.44.4.992-993.1982
  7. Cawoy, H., Bettiol, W., Fickers, P. and Ongena, M. 2011. Bacillus-based biological control of plant diseases. In: Pesticides in the modern world: pesticides use and management, ed. by M. Stoytcheva, pp. 273-302. InTech, Rijeka, Croatia.
  8. Chen, L., Gu, W., Xu, H.-Y., Yang, G.-L., Shan, X.-F., Chen, G., Wang, C.-F. and Qian, A.-D. 2018. Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech 8:114. https://doi.org/10.1007/s13205-018-1125-2
  9. Chet, I. and Inbar, J. 1994. Biological control of fungal pathogens. Appl. Biochem. Biotechnol. 48:37-43. https://doi.org/10.1007/BF02825358
  10. Choi, K. S. 2007. Field evaluation of fungicides for controlling potato late blight and monitoring of fungicide resistance. Master thesis. Gangneung-Wonju National University, Gangneung, Korea (in Korean).
  11. Chun, B. H., Kim, K. H., Jeong, S. E. and Jeon, C. O. 2019. Genomic and metabolic features of the Bacillus amyloliquefaciens group- B. amyloliquefaciens, B. velezensis, and B. siamensis- revealed by pan-genome analysis. Food Microbiol. 77:146-157. https://doi.org/10.1016/j.fm.2018.09.001
  12. Chycoski, C. I. and Punja, Z. K. 1996. Characteristics of populations of Phytophthora infestans from potato in British Columbia and other regions of Canada during 1993 to 1995. Plant Dis. 80:579-589. https://doi.org/10.1094/PD-80-0579
  13. Cohen, Y., Gisu, U. and Mosinger, E. 1991. Systemic resistance of potato plants against Phytophthora infestans induced by unsaturated fatty acids. Physiol. Mol. Plant Pathol. 38:255-263. https://doi.org/10.1016/S0885-5765(05)80117-1
  14. Cohen, Y. and Reuveni, M. 1983. Occurrence of metalaxylresistant isolates of Phytophthora infestans in potato fields in Israel. Phytopathology 73:925-927. https://doi.org/10.1094/Phyto-73-925
  15. Copping, L. G. 2004. The manual of biocontrol agents. 4th ed. British Crop Protection Council, Alton, UK. 702 pp.
  16. Desjardins, A. E., McCormick, S. P. and Corsini, D. L. 1995. Diversity of sesquiterpenes in 46 potato cultivars and breeding selections. J. Agric. Food Chem. 43:2267-2272. https://doi.org/10.1021/jf00056a056
  17. Dinu, S., Boiu-Sicuia, O.-A. and Constantinescu, F. 2019. Influence of Bacillus Spp. based bioproducts on potato plant growth and control of Rhizoctonia solani. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca, Anim. Sci. Biotechnol. 76:29-34. https://doi.org/10.15835/buasvmcn-asb:2018-0022
  18. Dowley, L. J. and O'sullivan, E. 1981. Metalaxyl-resistant strains of Phytophthora infestans (Mont.) de bary in ireland. Potato Res. 34:417-421. https://doi.org/10.1007/BF02357324
  19. El-Naggar, M. A., Abouleid, H. Z., El-Deeb, H. M., Abd-ElKareem, F. and Elshahawy, I. E. 2016. Biological control of potato late blight by means of induction systemic resistance and antagonism. Res. J. Pharm. Biol. Chem. Sci. 7:1338-1348.
  20. Elad, Y. and Kapat, A. 1999. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 105:177-189. https://doi.org/10.1023/A:1008753629207
  21. Estrella, F. S., Elorrieta, M. A., Vargas, G. C., Lopez, M. J. and Moreno, J. 2001. Selective isolation of antagonist microorganisms of Fusarium oxysporum f. sp. melonis. Biol. Control Plant Pathol. 24:109-112.
  22. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  23. Folman, L. B., De Klein, M. J. E. M., Postma, J. and van Veen, J. A. 2004. Production of antifungal compounds by Lysobacter enzymogenes isolate 3.1T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biol. Control 31:145-154. https://doi.org/10.1016/j.biocontrol.2004.03.008
  24. Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43:337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  25. Fry, W. E., Goodwin, S. B., Matuszak, J. M., Spielman, L. J., Milgroom, M. G. and Drenth, A. 1992. Population genetics and intercontinental migrations of Phytophthora infestans. Annu. Rev. Phytopathol. 30:107-129. https://doi.org/10.1146/annurev.py.30.090192.000543
  26. Giddings, N. J. and Berg, A. 1919. A comparison of the late blights of tomato and potato. Phytopathology 9:209-210.
  27. Hahm, Y. I., Hahn, B. H. and Franckowiak, J. D. 1978. Forecasting late blight of potatoes at the alpine area in Korea. Korean J. Plant Prot. 17:81-87.
  28. Halebian, S., Harris, B., Finegold, S. M. and Rolfe, R. D. 1981. Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J. Clin. Microbiol. 13:444-448. https://doi.org/10.1128/jcm.13.3.444-448.1981
  29. Hartmann, M., Berditsch, M., Hawecker, J., Ardakani, M. F., Gerthsen, D. and Ulrich, A. S. 2010. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother. 54:3132-3142. https://doi.org/10.1128/aac.00124-10
  30. Hussein, K. A. and Joo, J. H. 2018. Plant growth-promoting rhizobacteria improved salinity tolerance of Lactuca sativa and Raphanus sativus. J. Microbiol. Biotechnol. 28:938-945. https://doi.org/10.4014/jmb.1712.12027
  31. Hwang, J. Y., Shim, C.-K., Ryu, K.-Y., Choi, D.-H. and Jee, H.-J. 2006. Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as biological control agents against sclerotinia rot of lettuce. Res. Plant Dis. 12:254-259 (in Korean). https://doi.org/10.5423/RPD.2006.12.3.254
  32. International Potato Center. 2004. Annual report. Late blight new development. International Potato Center, Lima, Peru. pp. 9-13.
  33. Jin, S.-R., Lee H.-M., Nam K.-W. and Park, K. 2018. Biological control of white strain symptom on grape fruit by Bacillus velezensis MWS28. Korean J. Pestic. Sci. 22:345-355. https://doi.org/10.7585/kjps.2018.22.4.345
  34. Kamoun, S., Furzer, O., Jones, J. D., Judelson, H. S., Ali, G. S., Dalio, R. J., Roy, S. G., Schena, L., Zambounis, A., Panabieres, F., Cahill, D., Ruocco, M., Figueiredo, A., Chen, X. R., Hulvey, J., Stam, R., Lamour, K., Gijzen, M., Tyler, B. M., Grunwald, N. J., Mukhtar, M. S., Tome, D. F., Tor, M., Van Den Ackerveken, G., McDowell, J., Daayf, F., Fry, W. E., Lindqvist-Kreuze, H., Meijer, H. J., Petre, B., Ristaino, J., Yoshida, K., Birch, P. R. and Govers, F. 2015. The top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 16:413-434. https://doi.org/10.1111/mpp.12190
  35. Kang, S. Y., Kim, C. W. and Jeon, Y. C. 2013. Disease suppression on late blight in potato tissue culture by Burkholderia gladioli TRK2-2 or DL-3-amino butyric acid. J. Asian Agric. Biotechnol. 29:1-7.
  36. Kerkeni, A., Daami-Remadi, M., Tarchoun, N. and Khedher, M. B. 2007. In vitro and in vivo suppression of Fusaruim oxysporum f. sp. radicis-lycopersici the causal agent of Fusarium crown and root rot of tomato by some compost fungi. Int. J. Agric. Res. 2:1022-1029. https://doi.org/10.3923/ijar.2007.1022.1029
  37. Khan, M. A., Asaf, S., Khan, A. L., Jan, R., Kang, S.-M., Kim, K.-M. and Lee, I.-J. 2020. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol. 20:175. https://doi.org/10.1186/s12866-020-01822-7
  38. Kim, B.-S., Choi, J.-H., Chun, W.-H., Ryu, K-Y., Hahm, Y.-I. and Lee, Y.-S. 2000. Mating type and metalaxyl sensitivity of Phytophthora infestans isolated from Kangwon area in Korea. Korean J. Pestic. Sci. 4:59-63 (in Korean).
  39. Kim, B.-Y., Ahn, J.-H., Weon, H.-Y., Song, J., Kim, S.-I. and Kim, W.-G. 2012. Isolation and characterization of Bacillus species possessing antifungal activity against ginseng root rot pathogens. Korean J. Pestic. Sci. 16:357-363 (in Korean). https://doi.org/10.7585/kjps.2012.16.4.357
  40. Kim, S. Y., Lee, S. Y., Weon, H.-Y., Sang, M. K. and Song, J. 2017. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. J. Biotechnol. 241:112-125. https://doi.org/10.1016/j.jbiotec.2016.11.023
  41. Kim, S. Y., Sang, M. K., Weon, H.-Y., Jeon, Y.-A., Ryoo, J. H. and Song, J. 2016. Characterization of multifunctional Bacillus sp. GH1-13. Korean J. Pestic. Sci. 20:189-196 (in Korean). https://doi.org/10.7585/kjps.2016.20.3.189
  42. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  43. Kirk, W., Wharton, P., Hammerschmidt, R., Abu-el Samen, F. and Douches, D. 2004. Late blight. URL https://www.canr.msu.edu/resources/michigan_potato_diseases_late_blight_e2945 [18 March 2010].
  44. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874. https://doi.org/10.1093/molbev/msw054
  45. Lamsal, K., Kim, S. W., Kim, Y. S. and Lee, Y. S. 2013. Biocontrol of late blight and plant growth promotion in tomato using rhizobacterial isolates. J. Microbiol. Biotechnol. 23:897-904. https://doi.org/10.4014/jmb.1209.09069
  46. Latijnhouwers, M., Ligterink, W., Vleeshouwers, V. G. A. A., van West, P. and Govers, F. 2004. A Gα- subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol. Microbiol. 51:925-936. https://doi.org/10.1046/j.1365-2958.2003.03893.x
  47. Lee, S.-Y., Kim, B.-Y., Ahn, J.-H., Song, J., Seol, Y.-J., Kim, W.-G. and Weon, H.-Y. 2012. Draft genome sequence of the biocontrol bacterium Bacillus amyloliquefaciens strain M27. J. Bacteriol. 194:6934-6945. https://doi.org/10.1128/JB.01835-12
  48. Lee, W. H., So, M. S. and Choi, I. Y. 1994. Fungicide-resistance and mating type of Phytophthora infestans causing potato late blight. Korean J. Plant Pathol. 10:192-196 (in Korean).
  49. Lucy, M., Reed, E. and Glick, B. R. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  50. Lynch, D. H., Halberg, N. and Bhatta, G. D. 2012. Environmental impact of organic agriculture in temperate regions. CAB Rev. 7:010.
  51. Masmoudi, F., Abdelmalek, N., Tounsi, S., Dunlap, C. A. and Trigui, M. 2019. Abiotic stress resistance, plant growth promotion and antifungal potential of halotolerant bacteria from a Tunisian solar saltern. Microbiol. Res. 229:126331. https://doi.org/10.1016/j.micres.2019.126331
  52. Miller, J. S., Johnson, D. A. and Hamm, P. B. 1998. Aggressiveness of isolates of Phytophthora infestans from the Columbia Basin of Washington and Oregon. Phytopatholgy 88:190-197. https://doi.org/10.1094/PHYTO.1998.88.3.190
  53. Novy, R. G., Love, S. L., Corsini, D. L., Pavek, J. J., Whitworth, J. L., Mosley, A. R., James, S. R., Hane, D. C., Shock, C. C., Rykbost, K. A., Brown, C. R., Thornton, R. E., Knowles, N. R., Pavek, M. J., Olsen, N. and Inglis, D. A. 2006. Defender: a high-yielding, processing potato cultivar with foliar and tuber resistance to late blight. Am. J. Potato Res. 83:9-19. https://doi.org/10.1007/BF02869605
  54. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
  55. Park, K.-H., Ryu, K.-Y., Yun, J.-C., Jeong, K.-S., Kim, J.-S., Kwon, M., Kim, B.-S. and Cha, B.-J. 2010. Changes of mating type distribution and fungicide-resistance of Phytophthora infestans collected from Gangwon Province. Res. Plant Dis. 16:274-278 (in Korean). https://doi.org/10.5423/RPD.2010.16.3.274
  56. Park, Y. E., Cho, H. M., Cho, J.-H., Cho, K. S., Kim, H. J. and Landeo, J. 2011. Evaluation of late blight resistance and agronomic characteristics of short-day adapted potato germplasm. Korean J. Hortic. Sci. Technol. 29:474-481 (in Korean).
  57. Park, Y.-G., Mun, B.-G., Kang, S.-M., Hussain, A., Shahzad, R., Seo, C.-W., Kim, A.-Y., Lee, S.-U., Oh, K. Y., Lee, D. Y., Lee, I.-J. and Yun, B.-W. 2017. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS ONE 12:e0173203. https://doi.org/10.1371/journal.pone.0173203
  58. Praveen Kumar, G., Mir Hassan Ahmed, S. K., Desai, S., Leo Daniel Amalraj, E. and Rasul, A. 2014. In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. Int. J. Bacteriol. 2014:195946. https://doi.org/10.1155/2014/195946
  59. Quimby, P. C., King, L. R. and Grey, W. E. 2002. Biological control as a means of enhancing the sustainability of crop/land management systems. Agric. Ecosyst. Environ. 88:147-152. https://doi.org/10.1016/S0167-8809(01)00251-1
  60. Ramarathnam, R., Bo, S., Chen, Y., Fernando, W. G. D., Xuewen, G. and de Kievit, T. 2007. Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can. J. Microbiol. 53:901-911. https://doi.org/10.1139/W07-049
  61. Ryu, K.-Y., Jee, H.-J., Choi, D.-H., Cheon, J.-U., Kim, J.-T. and Kim, B.-S. 2005. Disease progress and yield loss of potato late blight caused by Pntytophthora Infestans in organic farming fields. Res. Plant Dis. 11:122-127 (in Korean). https://doi.org/10.5423/RPD.2005.11.2.122
  62. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  63. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory, New York, NY, USA.
  64. Shim, C.-K., Kim, M.-J., Kim, Y.-K., Jee, H.-J., Park, J.-H., Hong, S.-J., Han, E.-J. and Kim, S.-C. 2015. Estimation of the chitinolytic and antifungal activity of Streptomyces sp. CA-23 and AA-65 isolates isolated from waste mushroom media. Korean J. Pestic. Sci. 19:402-410 (in Korean). https://doi.org/10.7585/kjps.2015.19.4.402
  65. Siddikee, M. A., Chauhan, P. S., Anandham, R., Han, G.-H. and Sa, T. 2010. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J. Microbiol. Biotechnol. 20:1577-1584. https://doi.org/10.4014/jmb.1007.07011
  66. Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization. In: Methods for general and molecular bacteriology, eds. by P. Gerhardt, R. G. E. Murray, W. A. Woods and N. R. Krieg, pp. 607-654. American Society for Microbiology, Washington, DC, USA.
  67. Srivastava, S., Yadav, A., Seem, K., Mishra, S., Chaudhary, V. and Nautiyal, C. S. 2008. Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr. Microbiol. 56:453-457. https://doi.org/10.1007/s00284-008-9105-0
  68. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  69. Wang, R., Wang, C., Feng, Q., Liou, R.-M. and Lin, Y.-F. 2021. Biological inoculant of salt-tolerant bacteria for plant growth stimulation under different saline soil conditions. J. Microbiol. Biotechnol. 31:398-407. https://doi.org/10.4014/jmb.2009.09032
  70. Yao, Y., Li, Y., Chen, Z., Zheng, B., Zhang, L., Niu, B., Meng, J., Li, A., Zhang, J. and Wang, Q. 2016. Biological control of potato late blight using isolates of Trichoderma. Am. J. Potato Res. 93:33-42. https://doi.org/10.1007/s12230-015-9475-3
  71. Yeo, S.-H., Yook, Y.-M. and Kim, H.-S. 2009. Isolation and characterization of plant growth promoting rhizobacterium Bacillus subtilis YK-5 from soil. KSBB J. 24:334-340 (in Korean).
  72. Zhang, X.-Z., Ryu, K.-Y., Kim, J.-S., Cheon, J.-U. and Kim, B.-S. 2005. Changes in the sensitivity to metalaxyl, dimethomorph and ethaboxam of Phytophthora infestans in Korea. Plant Pathol. J. 21:33-38. https://doi.org/10.5423/PPJ.2005.21.1.033