DOI QR코드

DOI QR Code

Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of Salmonella enterica serovar Typhimurium

  • Mechesso, Abraham F. (Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University) ;
  • Quah, Yixian (Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Seung-Chun (Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University)
  • Received : 2019.06.10
  • Accepted : 2019.09.17
  • Published : 2021.01.15

Abstract

Background: Invasive infections due to foodborne pathogens, including Salmonella enterica serovar Typhimurium, are prevalent and life-threatening. This study aimed to evaluate the effects of ginsenoside Rg3 (Rg3) on the adhesion, invasion, and intracellular survival of S. Typhimurium. Methods: The impacts of Rg3 on bacterial growth and host cell viability were determined using the time kill and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays, respectively. Gentamicin assay and confocal microscopic examination were undertaken to determine the effects of Rg3 on the adhesive and invasive abilities of S. Typhimurium to Caco-2 and RAW 264.7 cells. Quantitative reverse transcription polymerase chain reaction was performed to assess the expression of genes correlated with the adhesion, invasion, and virulence of S. Typhimurium. Results: Subinhibitory concentrations of Rg3 significantly reduced (p < 0.05) the adhesion, invasion, and intracellular survival of S. Typhimurium. Rg3 considerably reduced (p < 0.05) the bacterial motility as well as the release of nitrite from infected macrophages in a concentration-dependent manner. The expression of genes related to the adhesion, invasion, quorum sensing, and virulence of S. Typhimurium including cheY, hilA, OmpD, PrgK, rsgE, SdiA, and SipB was significantly reduced after Rg3 treatment. Besides, the compound downregulated rac-1 and Cdc-42 that are essential for actin remodeling and membrane ruffling, thereby facilitating Salmonella entry into host cells. This report is the first to describe the effects of Rg3 on "trigger" entry mechanism and intracellular survival S. Typhimurium. Conclusion: Rg3 could be considered as a supplement agent to prevent S. Typhimurium infection.

Keywords

References

  1. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffn PM. Foodborne illness acquired in the United States-Major pathogens. Emerg Infect Dis 2011;17:7-15. https://doi.org/10.3201/eid1701.09-1101p1
  2. Kraehenbuhl JP, Neutra MR. Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 2000;16:301-32. https://doi.org/10.1146/annurev.cellbio.16.1.301
  3. Kage H, Takaya A, Ohya M, Yamamoto T. Coordinated regulation of expression of Salmonella pathogenicity island 1 and flagellar type III secretion systems by ATP-dependent ClpXP protease. J Bacteriol 2008;190:2470-8. https://doi.org/10.1128/JB.01385-07
  4. Lawhon SD, Khare S, Rossetti CA, Everts RE, Galindo CL, Luciano SA, Figueiredo JF, Nunes JE, Gull T, Davidson GS, et al. Role of spi-1 secreted effectors in acute bovine response to Salmonella enterica serovar typhimurium: a systems biology analysis approach. PLoS One 2011;6. e26869. https://doi.org/10.1371/journal.pone.0026869
  5. Rosselin M, Abed N, Virlogeux-Payant I, Bottreau E, Sizaret PY, Velge P, Wiedemann A. Heterogeneity of type III secretion system (T3SS)-1-independent entry mechanisms used by Salmonella enteritidis to invade different cell types. Microbiology 2011;157:839-47. https://doi.org/10.1099/mic.0.044941-0
  6. Waterman SR, Holden DW. Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 2003;5:501-11. https://doi.org/10.1046/j.1462-5822.2003.00294.x
  7. Jiang T, Li M. Quorum sensing inhibitors: a patent review. Expert Opin Ther Pat 2013;23:867-94. https://doi.org/10.1517/13543776.2013.779674
  8. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12:564-82. https://doi.org/10.1128/cmr.12.4.564
  9. Turgis M, Han J, Caillet S, Lacroix M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 2009;20:1073-9. https://doi.org/10.1016/j.foodcont.2009.02.001
  10. Tsou LK, Lara-Tejero M, Rosefigura J, Zhang ZJ, Wang YC, Yount JS, Lefebre M, Dossa PD, Kato J, Guan F, et al. Antibacterial flavonoids from medicinal plants covalently inactivate type III protein secretion substrates. J Am Chem Soc 2016;138:2209-18. https://doi.org/10.1021/jacs.5b11575
  11. Zhang Y, Liu Y, Qiu J, Luo ZQ, Deng X. The herbal compound thymol protects mice from lethal infection by Salmonella Typhimurium. Front Microbiol 2018;9:1022. https://doi.org/10.3389/fmicb.2018.01022
  12. Hossain MA, Lee SJ, Park NH, Mechesso AF, Birhanu BT, Kang J, Reza MA, Suh JW, Park SC. Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways. Sci Rep 2017;7:10618. https://doi.org/10.1038/s41598-017-10997-5
  13. Birhanu BT, Park NH, Lee SJ, Hossain MA, Park SC. Inhibition of Salmonella Typhimurium adhesion, invasion, and intracellular survival via treatment with methyl gallate alone and in combination with marbofloxacin. Vet Res 2018;49:101. https://doi.org/10.1186/s13567-018-0597-8
  14. Kim HS, Lee EH, Ko SR, Choi KJ, Park JH, Im DS. Effects of ginsenosides Rg3 and Rh2 on the proliferation of prostate cancer cells. Arch Pharm Res 2004;27:429-35. https://doi.org/10.1007/BF02980085
  15. Nag SA, Qin JJ, Wang W, Wang MH, Wang H, Zhang R. Ginsenosides as anticancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front Pharmacol 2012;3:25. https://doi.org/10.3389/fphar.2012.00025
  16. Park D, Bae DK, Jeon JH, Lee J, Oh N, Yang G, Yang YH, Kim TK, Song J, Lee SH, et al. Immunopotentiation and antitumor effects of a ginsenoside Rg3-fortified red ginseng preparation in mice bearing H460 lung cancer cells. Environ Toxicol Pharmacol 2011;31:397-405. https://doi.org/10.1016/j.etap.2011.01.008
  17. Song Z, Kong KF, Wu H, Maricic N, Ramalingam B, Priestap H, Schneper L, Quirke JM, Hoiby N, Mathee K. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection. Phytomedicine 2010;17:1040-6. https://doi.org/10.1016/j.phymed.2010.03.015
  18. Lee JH, Shim JS, Chung MS, Lim ST, Kim KH. Inhibition of pathogen adhesion to host cells by polysaccharides from Panax ginseng. Biosci Biotechnol Biochem 2009;73:209-12. https://doi.org/10.1271/bbb.80555
  19. Chang CH, Yu B, Su CH, Chen DS, Hou YC, Chen YS, Hsu YM. Coptidis rhizome and Si Jun Zi Tang can prevent Salmonella enterica serovar typhimurium infection in mice. PLoS One 2014;9. e105362. https://doi.org/10.1371/journal.pone.0105362
  20. Huy TXN, Reyes AWB, Hop HT, Arayan LT, Min W, Lee HJ, Rhee MH, Chang HH, Kim S. Intracellular trafficking modulation by ginsenoside rg3 inhibits Brucella abortus uptake and intracellular survival within RAW 264.7 cells. J Microbiol Biotechnol 2017;27:616-23. https://doi.org/10.4014/jmb.1609.09060
  21. Lee SJ, Park NH, Mechesso AF, Lee KJ, Park SC. The phenotypic and molecular resistance induced by a single-exposure to sub-mutant prevention concentration of marbofloxacin in Salmonella Typhimurium isolates from swine. Vet Microbiol 2017;207:29-35. https://doi.org/10.1016/j.vetmic.2017.05.026
  22. Brunelle BW, Bearson SMD, Bearson BL. Tetracycline accelerates the temporally-regulated invasion response in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. BMC Microbiol 2013:202.
  23. Kim HJ, Tsoyi K, Heo JM, Kang YJ, Park MK, Lee YS, Lee JH, Seo HG, Yunchoi HS, Chang KC. Regulation of LPS-induced iNOS synthase expression through the NFkB pathway and interferon-beta/tyrosine kinase 2/janus tyrosine kinase 2-signal transducer and activator of transcription-1 signaling cascade by THI 53, a new synthetic isoquinoline alkaloid. J Pharmacol Exp Ther 2007;320:782-9. https://doi.org/10.1124/jpet.106.112052
  24. Li Guanghui, Yan Chunhong, Xu Yunfeng, Feng Yuqing, Wu Qian, Lv Xiaoying, Yang Baowei, Xin Wang XX. Punicalagin inhibits Salmonella virulence factors and has anti-quorum-sensing potential. Appl Environ Microbiol 2014;80:6204-11. https://doi.org/10.1128/AEM.01458-14
  25. Gagnon M, Zihler Berner A, Chervet N, Chassard C, Lacroix C. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J Microbiol Methods 2013;94:274-9. https://doi.org/10.1016/j.mimet.2013.06.027
  26. Eswarappa SM, Panguluri KK, Hensel M, Chakravortty D. The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence. Microbiology 2008;154:666-78. https://doi.org/10.1099/mic.0.2007/011114-0
  27. Johnson MB, Criss AK. Fluorescence microscopy methods for determining the viability of bacteria in association with mammalian cells. J Vis Exp 2013;79. e50729.
  28. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982;126:131-8. https://doi.org/10.1016/0003-2697(82)90118-X
  29. Surette MG, Miller MB, Bassler BL. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci 1999;96:1639-44. https://doi.org/10.1073/pnas.96.4.1639
  30. Mambu J, Virlogeux-Payant I, Holbert S, Grepinet O, Velge P, Wiedemann A. An updated view on the Rck invasin of Salmonella: still much to discover. Front Cell Infect Microbiol 2017;7:500. https://doi.org/10.3389/fcimb.2017.00500
  31. Chousalkar K, Gole VC. Salmonellosis acquired from poultry. Curr Opin Infect Dis 2016;29:514-9. https://doi.org/10.1097/QCO.0000000000000296
  32. Cragg GM, Newman DJ. Biodiversity: a continuing source of novel drug leads. Pure Appl Chem 2005;77:7-24. https://doi.org/10.1351/pac200577010007
  33. Lee KA, Kim WJ, Kim HJ, Kim KT, Paik HD. Antibacterial activity of Ginseng (Panax ginseng C. A. Meyer) stems-leaves extract produced by subcritical water extraction. Int J Food Sci Technol 2013;48:947-53. https://doi.org/10.1111/ijfs.12046
  34. Chung TH, Park C, Choi IH. Effects of Korean red ginseng marc with aluminum sulfate against pathogen populations in poultry litters. J Ginseng Res 2015;39:414-7. https://doi.org/10.1016/j.jgr.2015.06.005
  35. Lee JH, Jeong CS. Inhibitory effects of Ginsenoside Rb1, Rg3, and Panax ginseng head butanol fraction on inflammatory mediators from LPS-stimulated RAW 264.7 cells. Biomol Ther 2008;16:277-85. https://doi.org/10.4062/biomolther.2008.16.3.277
  36. Yang J, Li s, Wang L, Du F, Zhou X, Song Q, Zhao J, Fang R. Ginsenoside Rg3 attenuates lipopolysaccharide-induced acute lung injury via MerTK-dependent activation of the PI3K/AKT/mTOR pathway. Front Pharmacol 2018;9:850. https://doi.org/10.3389/fphar.2018.00850
  37. Hansen-Wester I, Hensel M. Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect 2001;3:549-59. https://doi.org/10.1016/S1286-4579(01)01411-3
  38. Hara-Kaonga B, Pistole TG. OmpD but not OmpC is involved in adherence of Salmonella enterica serovar Typhimurium to human cells. Can J Microbiol 2004;50:719-27. https://doi.org/10.1139/w04-056
  39. Negm RS, Pistole TG. Macrophages recognize and adhere to an OmpD-like protein of Salmonella typhimurium. FEMS Immunol Med Microbiol 1998;20: 191-9. https://doi.org/10.1016/S0928-8244(98)00011-X
  40. Ofek I, Bayer EA, Abraham SN. Bacterial adhesion. Prokaryotes Hum. Microbiol. 2013;15:32.
  41. Klein JR, Fahlen TF, Jones BD. Transcriptional organization and function of invasion genes within Salmonella enterica serovar Typhimurium pathogenicity island 1, including the prgH, prgI, prgJ, prgK, orgA, orgB, and orgC genes. Infect Immun 2000;68:3368-76. https://doi.org/10.1128/IAI.68.6.3368-3376.2000
  42. Galan JE. Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 2001;17:53-86. https://doi.org/10.1146/annurev.cellbio.17.1.53
  43. Hapfelmeier S, Ehrbar K, Stecher B, Barthel M, Kremer M, Hardt WD. Role of the Salmonella pathogenicity island 1 effector proteins SipA, SopB, SopE, and Sop-2 in Salmonella enterica subspecies 1 serovar Typhimurium colitis in streptomycin-pretreated Mice. Infect Immun 2004;72:795-809. https://doi.org/10.1128/IAI.72.2.795-809.2004
  44. Thijs IMV, De Keersmaecker SCJ, Fadda A, Engelen K, Zhao H, McClelland M, Marchal M, vanderleyden J. Delineation of the Salmonella enterica serovar Typhimurium HilA regulon through genome-wide location and transcript analysis. J Bacteriol 2007;189:4587-96. https://doi.org/10.1128/JB.00178-07
  45. Khoramian-Falsafi T, Harayama S, Kutsukake K, Pechere JC. Effect of motility and chemotaxis on the invasion of Salmonella typhimurium into HeLa cells. Microb Pathog 1990;9:47-53. https://doi.org/10.1016/0882-4010(90)90039-S
  46. Guhaniyogi J, Wu T, Patel SS, Stock AM. Interaction of CheY with the C-terminal peptide of Chez. J Bacteriol 2008;190:1419-28. https://doi.org/10.1128/JB.01414-07
  47. Wolanin PM, Webre DJ, Stock JB. Mechanism of phosphatase activity in the chemotaxis response regulator CheY. Biochemistry 2003;42:14075-82. https://doi.org/10.1021/bi034883t
  48. Choi J, Shin D, Kim M, Park J, Lim S, Ryu S. LsrR-mediated quorum sensing controls invasiveness of Salmonella typhimurium by regulating SPI-1 and flagella genes. PLoS One 2012;7. e37059. https://doi.org/10.1371/journal.pone.0037059
  49. Ibarra JA, Steele-Mortimer O. Salmonella- the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 2009;11:1579-86. https://doi.org/10.1111/j.1462-5822.2009.01368.x
  50. Misselwitz B, Kreibich SK, Rout S, Stecher B, Periaswamy B, Hardt WD. Salmonella enterica serovar typhimurium binds to hela cells via fim-mediated reversible adhesion and irreversible type three secretion system 1-mediated docking. Infect Immun 2011;79:330-41. https://doi.org/10.1128/IAI.00581-10
  51. Patel JC, Galan JE. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol 2006;175:453-63. https://doi.org/10.1083/jcb.200605144
  52. Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W, Hardt WD. SopE and Sop-2 from Salmonella Typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem 2001;276:34035-40. https://doi.org/10.1074/jbc.M100609200
  53. Tripathi P. Nitric oxide and immune response. Indian J Biochem Biophys 2007;44:310-9.
  54. Chanana V, Ray P, Rishi DB, Rishi P. Reactive nitrogen intermediates and monokines induce caspase-3 mediated macrophage apoptosis by anaerobically stressed Salmonella typhi. Clin Exp Immunol 2007;150:368-74. https://doi.org/10.1111/j.1365-2249.2007.03503.x
  55. Lee IS, Uh I, Kim KS, Kim KH, Park J, Kim Y, JungJH, Jang HJ. Anti-inflammatory effects of Ginsenoside Rg3 via NF- B pathway in A549 cells and human asthmatic lung tissue. J Immunol Res 2016;2016:7521601. https://doi.org/10.1155/2016/7521601