Abstract
This paper proposes a new personalized HRTF estimation method which is based on a deep neural network (DNN) model and improved elevation reproduction using a notch filter. In the previous study, a DNN model was proposed that estimates the magnitude of HRTF by using anthropometric measurements [1]. However, since this method uses zero-phase without estimating the phase, it causes the internalization (i.e., the inside-the-head localization) of sound when listening the spatial sound. We devise a method to estimate both the magnitude and phase of HRTF based on the DNN model. Personalized HRIR was estimated using the anthropometric measurements including detailed data of the head, torso, shoulders and ears as inputs for the DNN model. After that, the estimated HRIR was filtered with an appropriate notch filter to improve elevation reproduction. In order to evaluate the performance, both of the objective and subjective evaluations are conducted. For the objective evaluation, the root mean square error (RMSE) and the log spectral distance (LSD) between the reference HRTF and the estimated HRTF are measured. For subjective evaluation, the MUSHRA test and preference test are conducted. As a result, the proposed method can make listeners experience more immersive audio than the previous methods.