Abstract
AR (Augmented Reality) is a technology that provides virtual content to the real world and provides additional information to objects in real-time through 3D content. In the past, a high-performance device was required to experience AR, but it was possible to implement AR more easily by improving mobile performance and mounting various sensors such as ToF (Time-of-Flight). Also, the importance of mobile augmented reality is growing with the commercialization of high-speed wireless Internet such as 5G. Thus, this paper proposes a system that can provide AR services via GNN (Graph Neural Network) using cameras and sensors on mobile devices. ToF of mobile devices is used to capture depth maps. A 3D point cloud was created using RGB images to distinguish specific colors of objects. Point clouds created with RGB images and Depth Map perform downsampling for smooth communication between mobile and server. Point clouds sent to the server are used for 3D object detection. The detection process determines the class of objects and uses one point in the 3D bounding box as an anchor point. AR contents are provided through app and web through class and anchor of the detected object.