DOI QR코드

DOI QR Code

The Effect on the Hip Muscle Activation of the Fall Direction and Knee Position During a Fall

  • Lee, Kwang Jun (Department of Physical Therapy, Injury Prevention and Biomechanics Laboratory, Yonsei University) ;
  • Lim, Kitaek (Department of Physical Therapy, Injury Prevention and Biomechanics Laboratory, Yonsei University) ;
  • Choi, Woochol Joseph (Department of Physical Therapy, Injury Prevention and Biomechanics Laboratory, Yonsei University)
  • 투고 : 2020.11.10
  • 심사 : 2021.01.11
  • 발행 : 2021.02.20

초록

Background: A hip fracture may occur spontaneously prior to the hip impact, due to the muscle pulling force exceeding the strength of the femur. Objects: We conducted falling experiments with humans to measure the activity of the hip muscles, and to examine how this was affected by the fall type. Methods: Eighteen individuals fell and landed sideways on a mat, by mimicking video-captured real-life older adults' falls. Falling trials were acquired with three fall directions: forward, backward, or sideways, and with three knee positions at the time of hip impact, where the landing side knee was free of constraint, or contacted the mat or the contralateral knee. During falls, the activities of the iliopsoas (Ilio), gluteus medius (Gmed), gluteus maximus (Gmax) and adductor longus (ADDL) muscles were recorded. Outcome variables included the time to onset, activity at the time of hip impact, and timing of the peak activity with respect to the time of hip impact. Results: For Ilio, Gmed, Gmax, and ADDL, respectively, EMG onset averaged 292, 304, 350, and 248 ms after fall initiation. Timing of the peak activity averaged 106, 96, 84, and 180 ms prior to the hip impact, and activity at the time of hip impact averaged 72.3, 45.2, 64.3, and 63.4% of the peak activity. Furthermore, the outcome variables were associated with fall direction and/or knee position in all but the iliopsoas muscle. Conclusion: Our results provide insights on the hip muscle activation during a fall, which may help to understand the potential injury mechanism of the spontaneous hip fracture.

키워드

참고문헌

  1. Grisso JA, Schwarz DF, Wishner AR, Weene B, Holmes JH, Sutton RL. Injuries in an elderly inner-city population. J Am Geriatr Soc 1990;38(12):1326-31. https://doi.org/10.1111/j.1532-5415.1990.tb03456.x
  2. Bouxsein ML, Szulc P, Munoz F, Thrall E, Sornay-Rendu E, Delmas PD. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J Bone Miner Res 2007;22(6):825-31. https://doi.org/10.1359/jbmr.070309
  3. Choi WJ, Hoffer JA, Robinovitch SN. The effect of positioning on the biomechanical performance of soft shell hip protectors. J Biomech 2010;43(5):818-25. https://doi.org/10.1016/j.jbiomech.2009.11.023
  4. Choi WJ, Hoffer JA, Robinovitch SN. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls. Clin Biomech (Bristol, Avon) 2010;25(1):63-9. https://doi.org/10.1016/j.clinbiomech.2009.08.009
  5. Lim KT, Choi WJ. Effect of fall characteristics on the severity of hip impact during a fall on the ground from standing height. Osteoporos Int 2020;31(9):1713-9. https://doi.org/10.1007/s00198-020-05432-x
  6. Laing AC, Robinovitch SN. The force attenuation provided by hip protectors depends on impact velocity, pelvic size, and soft tissue stiffness. J Biomech Eng 2008;130(6):061005. https://doi.org/10.1115/1.2979867
  7. Laing AC, Robinovitch SN. Low stiffness floors can attenuate fall-related femoral impact forces by up to 50% without substantially impairing balance in older women. Accid Anal Prev 2009;41(3):642-50. https://doi.org/10.1016/j.aap.2009.03.001
  8. Robinovitch SN, Evans SL, Minns J, Laing AC, Kannus P, Cripton PA, et al. Hip protectors: recommendations for biomechanical testing--an international consensus statement (part I). Osteoporos Int 2009;20(12):1977-88. https://doi.org/10.1007/s00198-009-1045-4
  9. Frankel VH, Burstein AH. Orthopaedic biomechanics: the application engineering to the musculoskeletal system. Philadelphia: Lea & Febiger; 1970.
  10. Patriarco AG, Mann RW, Simon SR, Mansour JM. An evaluation of the approaches of optimization models in the prediction of muscle forces during human gait. J Biomech 1981;14(8):513-25. https://doi.org/10.1016/0021-9290(81)90001-4
  11. Bouxsein ML, Coan BS, Lee SC. Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone 1999;25(1):49-54. https://doi.org/10.1016/S8756-3282(99)00093-9
  12. Pulkkinen P, Jamsa T, Lochmuller EM, Kuhn V, Nieminen MT, Eckstein F. Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry. Osteoporos Int 2008;19(4):547-58. https://doi.org/10.1007/s00198-007-0479-9
  13. Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 1986;55(6):1369-81. https://doi.org/10.1152/jn.1986.55.6.1369
  14. Parker MJ, Twemlow TR. Spontaneous hip fractures, 44/872 in a prospective study. Acta Orthop Scand 1997;68(4):325-6. https://doi.org/10.3109/17453679708996170
  15. Muckle DS. Iatrogenic factors in femoral neck fractures. Injury 1976;8(2):98-101. https://doi.org/10.1016/0020-1383(76)90041-3
  16. Parkkari J, Kannus P, Palvanen M, Natri A, Vainio J, Aho H, et al. Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcif Tissue Int 1999;65(3):183-7. https://doi.org/10.1007/s002239900679
  17. Alffram PA. An epidemiologic study of cervical and trochanteric fractures of the femur in an urban population. Analysis of 1,664 cases with special reference to etiologic factors. Acta Orthop Scand Suppl 1964; 35 Suppl 65:1-109. https://doi.org/10.3109/ort.1964.35.suppl-65.01
  18. Smith LD. Hip fractures; the role of muscle contraction or intrinsic forces in the causation of fractures of the femoral neck. J Bone Joint Surg Am 1953;35-A(2):367-83. https://doi.org/10.2106/00004623-195335020-00009
  19. Sloan J, Holloway G. Fractured neck of the femur: the cause of the fall? Injury 1981;13(3):230-2. https://doi.org/10.1016/0020-1383(81)90245-X
  20. Kelly JP. Fractures complicating electro-convulsive therapy and chronic epilepsy. J Bone Joint Surg Br 1954;36-B(1):70-9. https://doi.org/10.1302/0301-620X.36B1.70
  21. Nott MR, Watts JS. A fractured hip during electro-convulsive therapy. Eur J Anaesthesiol 1999;16(4):265-7. https://doi.org/10.1046/j.1365-2346.1999.00463.x
  22. Newbury CL, Etter LE. Clarification of the problem of vertebral fractures from convulsive therapy. I. Incidence. AMA Arch Neurol Psychiatry 1955;74(5):472-8. https://doi.org/10.1001/archneurpsyc.1955.02330170006002
  23. De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech 1997;13(2):135-63. https://doi.org/10.1123/jab.13.2.135
  24. Inman VT, Ralston HJ, Saunders JB, Feinstein B, Wright EW Jr. Relation of human electromyogram to muscular tension. Electroencephalogr Clin Neurophysiol 1952;4(2):187-94. https://doi.org/10.1016/0013-4694(52)90008-4
  25. Bigland B, Lippold OC. The relation between force, velocity and integrated electrical activity in human muscles. J Physiol 1954;123(1):214-24. https://doi.org/10.1113/jphysiol.1954.sp005044
  26. Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng 2010;38(2):269-79. https://doi.org/10.1007/s10439-009-9852-5
  27. Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, et al. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet 2013;381(9860):47-54. https://doi.org/10.1016/S0140-6736(12)61263-X
  28. Yang Y, Schonnop R, Feldman F, Robinovitch SN. Development and validation of a questionnaire for analyzing real-life falls in long-term care captured on video. BMC Geriatr 2013;13:40. https://doi.org/10.1186/1471-2318-13-40
  29. Schonnop R, Yang Y, Feldman F, Robinson E, Loughin M, Robinovitch SN. Prevalence of and factors associated with head impact during falls in older adults in long-term care. CMAJ 2013;185(17):E803-10. https://doi.org/10.1503/cmaj.130498
  30. Yang Y, Mackey DC, Liu-Ambrose T, Feldman F, Robinovitch SN. Risk factors for hip impact during real-life falls captured on video in long-term care. Osteoporos Int 2016;27(2):537-47. https://doi.org/10.1007/s00198-015-3268-x
  31. Choi WJ, Cripton PA, Robinovitch SN. Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporos Int 2015;26(1):291-301. https://doi.org/10.1007/s00198-014-2812-4
  32. Yang JF, Winter DA. Electromyographic amplitude normalization methods: improving their sensitivity as diagnostic tools in gait analysis. Arch Phys Med Rehabil 1984;65(9):517-21.
  33. Cheng XG, Lowet G, Boonen S, Nicholson PH, Brys P, Nijs J, et al. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 1997;20(3):213-8. https://doi.org/10.1016/S8756-3282(96)00383-3
  34. Cheng XG, Lowet G, Boonen S, Nicholson PH, Van der Perre G, Dequeker J. Prediction of vertebral and femoral strength in vitro by bone mineral density measured at different skeletal sites. J Bone Miner Res 1998;13(9):1439-43. https://doi.org/10.1359/jbmr.1998.13.9.1439
  35. Lochmuller EM, Groll O, Kuhn V, Eckstein F. Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 2002;30(1):207-16. https://doi.org/10.1016/S8756-3282(01)00621-4
  36. Pulkkinen P, Eckstein F, Lochmuller EM, Kuhn V, Jamsa T. Association of geometric factors and failure load level with the distribution of cervical vs. trochanteric hip fractures. J Bone Miner Res 2006;21(6):895-901. https://doi.org/10.1359/jbmr.060305
  37. Fyhrie DP, Schaffler MB. Failure mechanisms in human vertebral cancellous bone. Bone 1994;15(1):105-9. https://doi.org/10.1016/8756-3282(94)90900-8
  38. Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech 1998;31(7):601-8. https://doi.org/10.1016/S0021-9290(98)00057-8
  39. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 1977;59(7):954-62. https://doi.org/10.2106/00004623-197759070-00021
  40. Galante J, Rostoker W, Ray RD. Physical properties of trabecular bone. Calcif Tissue Res 1970;5(3):236-46. https://doi.org/10.1007/BF02017552
  41. Weaver JK, Chalmers J. Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content. J Bone Joint Surg Am 1966;48(2):289-98. https://doi.org/10.2106/00004623-196648020-00007
  42. Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Age- and gender-related differences in vertebral bone mass, density, and strength. J Bone Miner Res 1999;14(8):1394-403. https://doi.org/10.1359/jbmr.1999.14.8.1394
  43. Yang KH, Shen KL, Demetropoulos CK, King AI, Kolodziej P, Levine RS, et al. The relationship between loading conditions and fracture patterns of the proximal femur. J Biomech Eng 1996;118(4):575-8. https://doi.org/10.1115/1.2796045