References
- Amadio, C. and Fragiacomo, M. (2002), "Effective width evaluation for steel-concrete composite beams", J. Constr. Steel. Res., 58, 373-388. 10.1016/S0143-974X(01)00058-X.
- Amadio, C., Fedrigo, C., Fragiacomo, M. and Macorini, L. (2004), "Experimental evaluation of effective width in steel-concrete composite beams", J. Constr. Steel. Res., 60, 199-220. 10.1016/j.jcsr.2003.08.007.
- CEB-FIP (2010), Model Code 2010, First complete draft, vol. 1, International Federation for Structural Concrete (fib), Lausanne, Switzerland.
- Chen, S.S., Aref, A.J., Chiewanichakorn, M. and Ahn, I.S. (2007), "Proposed effective width criteria for composite bridge girders", J. Bridge Eng., 12(3), 325-338. 10.1061/(asce)1084-0702(2007)12:3(325).
- Chiewanichakorn, M., Aref, A.J., Chen, S.S. and Ahn, I. (2004), "Effective flange width definition for steel-concrete composite bridge girder", J. Struct. Eng., 130(12), 2016-2031. 10.1061/(ASCE)07339445(2004) 130:12(2016).
- Dezi, L., Gara, F. and Leoni, G. (2003), "Shear-lag effect in twin-girder composite decks", Steel Compos. Struct., 3(2), 111-122. https://doi.org/10.12989/scs.2003.3.2.111.
- Dezi, L., Gara, F. and Leoni, G. (2006), "Effective slab width in prestressed twin-girder composite decks", J. Struct. Eng., 132(9), 1358-1370. 10.1061/(ASCE)07339445(2006)132:9(1358).
- Eurocode (2004), Design of Composite Steel and Concrete Structures. Part 2: General Rules and Rules for Bridges, European Committee for Standardization; Brussels, Belgium.
- Gandelli, E., Penati, M., Quaglini, V., Lomiento, G., Miglio E. and Benzoni, G.M. (2019), "A novel OpenSees element for single curved surface sliding isolators", Soil Dyn. Earthq. Eng., 119, 433-453. 10.1016/j.soildyn.2018.01.044.
- Gara, F., Leoni, G. and Dezi, L. (2009), "A beam finite element including shear lag effect for the time-dependent analysis of steel-concrete composite decks", Eng. Struct., 31(8), 1888-1902. 10.1016/j.engstruct.2009.03.017.
- Gara, F., G Ranzi, G. and Leoni, G. (2011), "Partial interaction analysis with shear-lag effects of composite bridges: a finite element implementation for design applications", Adv. Steel Constr., 7(1), 1-16. 10.18057/ijasc.2011.7.1.1.
- Hognestad, E., Hanson, N.W. and McHenry, D. (1955), "Concrete stress distribution in ultimate strength design", ACI J. Proceedings, 52(12), 455-480.
- JTG 3362-2018 (2018), Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts. Ministry of Transport of PRC, Beijing, China. (in Chinese)
- Lezgy-Nazargah, M, and Kafi, L. (2015), "Analysis of composite steel-concrete beams using a refined high-order beam theory", Steel Compos. Struct., 18(6), 1353-1368. https://doi.org/10.12989/scs.2015.18.6.1353.
- Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2019), "A sinus shear deformation model for static analysis of composite steel-concrete beams and twin-girder decks including shear lag and interfacial slip effects", Thin-Wall. Struct., 134, 61-70. 10.1016/j.tws.2018.10.001.
- Li F.X. (2011), "Spatial Structural behavior and time-dependent analysis of composite cable stayed bridge", Ph.D. Dissertation, Tsinghua University, Beijing. (in Chinese)
- Lin, Z. and Zhao, J. (2012), "Modeling inelastic shear lag in steel box beams", Eng. Struct. 41, 90-97. 10.1016/j.engstruct.2012.03.018.
- Lin, W. and Yoda, T. (2013), "Experimental and numerical study on mechanical behavior of composite girders under hogging moment", Adv. Steel Constr., 9(4), 309-333. 10.18057/IJASC.2013.9.4.4.
- Luo, D., Zhang, Z. and Li B. (2019), "Shear lag effect in steel-concrete composite beam in hogging moment", Steel Compos. Struct., 31(1), 27-41. https://doi.org/10.12989/scs.2019.31.1.027.
- Ma, Y., Ni, Y.S., Xu, D. and Li, J.K. (2017), "Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs", Steel Compos. Struct., 24(5), 549-559. https://doi.org/10.12989/scs.2017.24.5.549.
- Nie, J.G., Tian, C.Y. and Cai, C.S. (2008), "Effective width of steel-concrete composite beam at ultimate strength state", Eng. Struct., 30, 1396-1407. 10.1016/j.engstruct.200 7.07.027.
- Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal weight concrete", AISC Eng. J., 8(2), 495-506.
- Ranzi, G. and Bradford, M.A. (2006), "Analytical solutions for the time-dependent behaviour of composite beams with partial interaction", Int. J. Solid. Struct., 43(13), 3770-3793. 10.1016/j.ijsolstr.2005.03.032.
- Ranzi, G. and Bradford, M.A. (2009), "Analysis of composite beams with partial interaction using the direct stiffness approach accounting for time effects", Int. J. Numer. Method. Eng., 78(5), 564-586. 10.1002/nme.2500.
- Vojnic-Purcar, M., Prokic, A. and Besevic, M. (2019), "A numerical model for laminated composite thin-walled members with openings considering shear lag effect", Eng. Struct., 185, 392-399. 10.1016/j.engstruct.201 9.01.142.
- Wendner, R., Vorel, J., Smith, J., Hoover, C.G., Bazant, Z.P. and Cusatis, G. (2015), "Characterization of concrete failure behavior: a comprehensive experimental database for the calibration and validation of concrete models", Mater. Struct., 48(11), 3603-3626. 10.1617/s11527-014-0426-0.
- Yoon, K., Lee, P.S. and Kim, D.N. (2017), "An efficient warping model for elastoplastic torsional analysis of composite beams", Compos. Struct., 178, 37-49. 10.1016/j.compstruct.2017.07.041.
- Zhu, L., Nie, J.G., Li, F.X. and Ji, W.Y. (2015), "Simplified analysis method accounting for shear-lag effect of steel-concrete composite decks", J. Constr. Steel. Res., 115(7), 62-80. 10.1016/j.jcsr.2015.08.020.
- Zhu, L. and Su, R.K.L. (2017), "Analytical solutions for composite beams with slip, shear-lag and time-dependent effects", Eng. Struct., 152, 559-578. 10.1016/j.engstruct.2017.08.071.