DOI QR코드

DOI QR Code

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran (Department of Mathematics, Karunya Institute of Technology and Sciences) ;
  • Jayan, M. Mahaveer Sree (Department of Mathematics, Karunya Institute of Technology and Sciences) ;
  • Ebrahimi, Farzad (Department of Mechanical Engineering, Imam Khomieni International University)
  • Received : 2020.05.02
  • Accepted : 2020.12.26
  • Published : 2021.02.25

Abstract

The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

Keywords

References

  1. Abd-Elaziz, E.M., Marin, M. and Othman, M.I. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory", Symmetry, 11(3), 413. https://doi.org/10.3390/sym11030413.
  2. Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Brazil. J. Phys., 45, 225-233. https://doi.org/10.1007/s13538-015-0306-2.
  3. Ansari, R., Gholami, R. and Sahmani, S. (2012), "On the dynamic stability of embedded single-walled carbon nanotubes including thermal environment effects", Sci. Iran, 19(3), 919-925. https://doi.org/10.1016/j.scient.2012.02.013.
  4. Arani, A.G., Roudbari, M.A. and Amir, S. (2016), "Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations", Appl. Math. Model., 40, 2025-2038. https://doi.org/10.1016/j.apm.2015.09.055.
  5. Askari, H. and Esmailzadeh, E. (2017), "Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations", Compos. B. Eng., 113, 31-43. https://doi.org/10.1016/j.compositesb.2016.12.046.
  6. Aydogdu, M. (2012), "Axial vibration analayisis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity". Mech. Res. Commun., 43, 34-40. https://doi.org/10.1016/j.mechrescom.2012.02.001.
  7. Azarboni, H.R. (2019), "Magneto-thermal primary frequency response analysis of carbon nanotube considering surface effect under different boundary conditions", Compos. B. Eng., 165, 435-441. https://doi.org/10.1016/j.compositesb.2019.01.093.
  8. Baghdadi, H., Tounsi, A., Zidour, M. and Benzair, A. (2014), "Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes uUsing nonlocal parabolic beam theory", Fuller Nanotub Car N., 23, 266-272. https://doi.org/10.1080/1536383x.2013.787605.
  9. Barati, M.R. (2018), "Investigating nonlinear vibration of closed circuit flexoelectric nanobeams with surface effects via hamiltonian method", Microsyst. Technol., 24, 1841-1851. https://doi.org/10.1007/s00542-017-3549-8.
  10. Bensattalah, T., Daouadji, T.H., Zidour, M., Tounsi, A. and Bedia, E.A. (2016), "Investigation of thermal and chirality effects on vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories", Mech. Compos., 52(4), 555-568. https://doi.org/10.1007/S11029-016-9606-Z.
  11. Benzair, A., Tounsi, A., Besseghier, A., Heireche, A., Moulay, N. and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 41, 225404(1-10). https://doi.org/10.1088/0022-3727/41/22/225404.
  12. Besseghier, A., Tounsi, A., Houari, M.S.A., Benzair, A., Boumia, L. and Heireche, H. (2011), "Thermal effect on wave propagation in double-walled carbon nanotubes embedded in a polymer matrix using nonlocal elasticity", Physica E Low Dimens. Syst. Nanostruct., 43, 1379-1386 https://doi.org/10.1016/j.physe.2011.03.008.
  13. Dai, H.L., Ceballes, S.A., Abdelkefi, A., Hong, Y.Z. and Wang, L. (2018), "Exact modes for postbuckling characteristics of nonlocal nanobeams in a longitudinal magnetic field", Appl. Math. Model., 55, 758-775. https://doi.org/10.1016/j.apm.2017.11.025.
  14. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain electric field gradient theory", Mech. Adv. Mater. Struct., 25(4), 350-359. https://doi.org/10.1080/15376494.2016.1255830.
  15. Ebrahimi, F. and Dabbagh, A. (2018), "Magnetic field effects on thermally affected propagation of acoustical waves in rotary double-nanobeam systems", Waves Random Complex Media., 1-21. https://doi.org/10.1080/17455030.2018.1558308.
  16. Eringen, A.C. (1983), "On differential equation of nonlocal elasticity and solution of screw dislocation and surface waves", J. Appl. Phys., 55, 4703. https://doi.org/10.1063/1.332803.
  17. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, Berlin.
  18. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Res., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  19. Fang, B. (2013), "Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory", Appl. Math. Mech., 37(3), 1096-1107. http://doi.org/10.1016/j.aprm.2012.03.032.
  20. Gheshlaghi, B. and Hasheminejad S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. B. Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026.
  21. Guven, U. (2015), "General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity", Appl. Math. Mech., 36, 1305-1318. https://link.springer.com/article/10.1007/s10483-015-1985-9.
  22. Hadzalic, E., Ibrahimbegovic, A.S. and Dolarevic, A. (2000), "3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated pork-plastic medium", Coupl. Syst. Mech., 9(1), 125-147. https://doi.org/10.12989/csm.2020.9.2.125.
  23. Heirechea, H., Tounsi, A., Benzaira, A., Maachoua, M. and Adda Bedia, E.A.A. (2008), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E Low Dimens. Syst. Nanostruct., 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021.
  24. Hsu, J.C., Chang, R.P. and Chang, W.J. (2008), "Resonance frequency of Chiral single walled carbon nanotubes using Timoshenko beam theory", Phys. Lett. A., 373, 2757-2759. https://doi.org/10.1016/j.physleta.2008.01.007.
  25. Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Part L: J. Mater.: Des. Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.
  26. Kumar, R., Sharma, N. and Lata, P. (2016a), "Thermomechanical interactions due to Hall current in transversely isotropic thermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
  27. Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magneto thermo-elastic medium", Coupl. Syst. Mech., 6(3), 317-333. https://doi.org/10.12989/csm.2017.6.3.317.
  28. Lata, P. and Kaur, I. (2019), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupl. Syst. Mech., 8(1), 55-70. http://dx.doi.org/10.12989/csm.2019.8.1.055.
  29. Lata, P. and Kaur, I. (2019a), "Thermomechanical interactions in a transversely isotropic magnato thermoelastic solids with two temperature and rotation due to time harmonic sources", Coupl. Syst. Mech., 8(3), 219-245. https://doi.org/10.12989/csm.2019.8.3.219.
  30. Lata, P., Kumar, R. and Sharma, N. (2016), "Plane wavesin anisotropic thermoelastic medium", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.
  31. Lee, L.H. and Chang, W.J. (2009), "Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium", Physica E Low Dimens. Syst. Nanostruct., 41, 529-553. https://doi.org/10.1016/j.physe.2008.10.002.
  32. Lei, X.W., Natsuki, T., Shi, J.X. and Ni, Q.Q. (2012), "Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model", Compos. B. Eng., 43, 64-69. https://doi.org/10.1016/j.compositesb.2011.04.032.
  33. Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E Low Dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028.
  34. Moreno-Navarro, P., Ibrahimbegovic, A. and Perez-Aparicio, J.L. (2018), "Linear elastic mechanicsal system interacting with coupled thermo-electro-magnetic fields", Coupl. Syst. Mech., 7(1), 5-26. http://dx.doi.org/10.12989/csm.2018.7.1.005.
  35. Naceri, M., Zidour, M., Semmah, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2011), "Sound wave propagation in armchair single walled carbon nanotubes under thermal environment", J. Appl .Phys., 110, 124322. https://doi.org/10.1063/1.3671636.
  36. Narendar, S., Roy Mahapatra, D. and Gopalakrishnan, S. (2011), "Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation", Int. J. Eng. Sci., 49(6), 509-522. https://doi.org/10.1016/j.ijengsci.2011.01.002.
  37. Narender, S. and Gopalakrishnan, S. (2010), "Ultrasonic wave characteristics of a nanorods via nonlocal strain gradient models", J. Appl. Phys., 107, 084312. https://doi.org/10.1063/1.3345869.
  38. Pradhan, S.C. and Phadikar, J.K. (2009), "Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models", Phys. Lett. A., 373, 1062-1069. https://doi.org/10.1016/j.physleta.2009.01.030.
  39. Rukavina, I., Ibrahimbegovic, A., Do, X.N. and Markovic, D. (2019), "ED-FEM multi-scale computation procedure for localized failure", Coupl. Syst. Mech., 8(2), 111-128. http://dx.doi.org/10.12989/csm.2019.8.2.117.
  40. Saadatnia, Z. and Esmailzadeh, E. (2017), "Nonlinear harmonic vibration analysis of fluid-conveying piezoelectric-layered nanotubes", Compos. B. Eng., 23, 193-209. https://doi.org/10.1016/j.compositesb.2017.05.012.
  41. Sadeghi-Goughari, M., Jeon, S. and Kwon, H. (2017), "Effects of magnetic-fluid flow on structural instability of a carbon nanotube conveying nanoflow under a longitudinal magnetic field", Phys. Lett. A, 381(35), 2898-905. https://doi.org/10.1016/j.physleta.2017.06.054.
  42. Semmah, A., Anwar, B.O., Mahmoud, S.R., Houari, H. and Tounsi, A. (2014) "Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model", Adv Mat Res., 3(2), 77-89. https://doi.org/10.12989/amr.2014.3.2.077.
  43. Tokio, Y. (1995), "Recent development of carbon nanotube", Synth. Meter., 70, 1511-8. https://doi.org/10.1016/0379-6779(94)02939-V.
  44. Tu, Z.C. and Yang, Z.C.O. (2002), "Single-walled and multi-walled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number", Phys. Rev. B Condens. Matter., 65, 233407-4. https://doi.org/10.1103/PhysRevB.65.233407.
  45. Vlase, S., Marin, M., Ochsner, A. and Scutaru, M. L. (2019), "Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system", Contin. Mech. Thermodyn., 31(3), 715-724. https://ink.springer.com/article.10.1007/s00161-018-0722-y.
  46. Wang, L., Hu, H. and Guo, W. (2006), "Validation of the non-local elastic shell model for studying longitudinal waves in single-walled carbon nanotubes", Nanotechnol., 17, 1408-1415. https://doi.org/10.1088/0957-4484/17/5/041.
  47. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124301-6. https://doi.org/10.1063/1.2141648.
  48. Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon Nanotubes with nonlocal continuum models", Phys. Lett. A., 357, 130-135. https://doi.org/10.1016/j.physleta.2006.04.026.
  49. Wu, Y., Zhang, X., Leung, A.Y.T. and Zhong, W. (2006), "An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes", Thin Wall. Struct., 44, 667-676. https://doi.org/10.1016/j.tws.2006.05.003.
  50. Yan, Z. and Jiang, L. (2011), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnol., 22(24), 245703. https://doi.org/10.1088/0957-4484/22/24/245703/meta.
  51. Zhang, D.P., Lei, Y. and Shen, Z.B. (2016), "Vibration analysis of horn-shaped single-walled carbon nanotubes embedded in viscoelastic medium under a longitudinal magnetic field", Int. J. Mech. Sci., 118, 219-230. https://doi.org/10.1016/j.ijmecsci.2016.09.025.
  52. Zhang, Y.O., Liu, X. and Liu, R.G. (2007), "Thermal effect on transverse vibrations of double walled carbon nanotubes", Nanotechnol., 18, 445701-7. https://doi.org/10.1088/0957-4484/18/44/445701/meta.
  53. Zhen, Y.X., Wen, S.L. and Tang, Y. (2019), "Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model", Physica E Low Dimens. Syst. Nanostruct., 105, 116-124. https://doi.org/10.1016/J.PHYSE.2018.09.005.
  54. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0.