References
- Abd-Elaziz, E.M., Marin, M. and Othman, M.I. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory", Symmetry, 11(3), 413. https://doi.org/10.3390/sym11030413.
- Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Brazil. J. Phys., 45, 225-233. https://doi.org/10.1007/s13538-015-0306-2.
- Ansari, R., Gholami, R. and Sahmani, S. (2012), "On the dynamic stability of embedded single-walled carbon nanotubes including thermal environment effects", Sci. Iran, 19(3), 919-925. https://doi.org/10.1016/j.scient.2012.02.013.
- Arani, A.G., Roudbari, M.A. and Amir, S. (2016), "Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations", Appl. Math. Model., 40, 2025-2038. https://doi.org/10.1016/j.apm.2015.09.055.
- Askari, H. and Esmailzadeh, E. (2017), "Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations", Compos. B. Eng., 113, 31-43. https://doi.org/10.1016/j.compositesb.2016.12.046.
- Aydogdu, M. (2012), "Axial vibration analayisis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity". Mech. Res. Commun., 43, 34-40. https://doi.org/10.1016/j.mechrescom.2012.02.001.
- Azarboni, H.R. (2019), "Magneto-thermal primary frequency response analysis of carbon nanotube considering surface effect under different boundary conditions", Compos. B. Eng., 165, 435-441. https://doi.org/10.1016/j.compositesb.2019.01.093.
- Baghdadi, H., Tounsi, A., Zidour, M. and Benzair, A. (2014), "Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes uUsing nonlocal parabolic beam theory", Fuller Nanotub Car N., 23, 266-272. https://doi.org/10.1080/1536383x.2013.787605.
- Barati, M.R. (2018), "Investigating nonlinear vibration of closed circuit flexoelectric nanobeams with surface effects via hamiltonian method", Microsyst. Technol., 24, 1841-1851. https://doi.org/10.1007/s00542-017-3549-8.
- Bensattalah, T., Daouadji, T.H., Zidour, M., Tounsi, A. and Bedia, E.A. (2016), "Investigation of thermal and chirality effects on vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories", Mech. Compos., 52(4), 555-568. https://doi.org/10.1007/S11029-016-9606-Z.
- Benzair, A., Tounsi, A., Besseghier, A., Heireche, A., Moulay, N. and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 41, 225404(1-10). https://doi.org/10.1088/0022-3727/41/22/225404.
- Besseghier, A., Tounsi, A., Houari, M.S.A., Benzair, A., Boumia, L. and Heireche, H. (2011), "Thermal effect on wave propagation in double-walled carbon nanotubes embedded in a polymer matrix using nonlocal elasticity", Physica E Low Dimens. Syst. Nanostruct., 43, 1379-1386 https://doi.org/10.1016/j.physe.2011.03.008.
- Dai, H.L., Ceballes, S.A., Abdelkefi, A., Hong, Y.Z. and Wang, L. (2018), "Exact modes for postbuckling characteristics of nonlocal nanobeams in a longitudinal magnetic field", Appl. Math. Model., 55, 758-775. https://doi.org/10.1016/j.apm.2017.11.025.
- Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain electric field gradient theory", Mech. Adv. Mater. Struct., 25(4), 350-359. https://doi.org/10.1080/15376494.2016.1255830.
- Ebrahimi, F. and Dabbagh, A. (2018), "Magnetic field effects on thermally affected propagation of acoustical waves in rotary double-nanobeam systems", Waves Random Complex Media., 1-21. https://doi.org/10.1080/17455030.2018.1558308.
- Eringen, A.C. (1983), "On differential equation of nonlocal elasticity and solution of screw dislocation and surface waves", J. Appl. Phys., 55, 4703. https://doi.org/10.1063/1.332803.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, Berlin.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Res., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Fang, B. (2013), "Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory", Appl. Math. Mech., 37(3), 1096-1107. http://doi.org/10.1016/j.aprm.2012.03.032.
- Gheshlaghi, B. and Hasheminejad S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. B. Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026.
- Guven, U. (2015), "General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity", Appl. Math. Mech., 36, 1305-1318. https://link.springer.com/article/10.1007/s10483-015-1985-9.
- Hadzalic, E., Ibrahimbegovic, A.S. and Dolarevic, A. (2000), "3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated pork-plastic medium", Coupl. Syst. Mech., 9(1), 125-147. https://doi.org/10.12989/csm.2020.9.2.125.
- Heirechea, H., Tounsi, A., Benzaira, A., Maachoua, M. and Adda Bedia, E.A.A. (2008), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E Low Dimens. Syst. Nanostruct., 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021.
- Hsu, J.C., Chang, R.P. and Chang, W.J. (2008), "Resonance frequency of Chiral single walled carbon nanotubes using Timoshenko beam theory", Phys. Lett. A., 373, 2757-2759. https://doi.org/10.1016/j.physleta.2008.01.007.
- Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Part L: J. Mater.: Des. Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.
- Kumar, R., Sharma, N. and Lata, P. (2016a), "Thermomechanical interactions due to Hall current in transversely isotropic thermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
- Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magneto thermo-elastic medium", Coupl. Syst. Mech., 6(3), 317-333. https://doi.org/10.12989/csm.2017.6.3.317.
- Lata, P. and Kaur, I. (2019), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupl. Syst. Mech., 8(1), 55-70. http://dx.doi.org/10.12989/csm.2019.8.1.055.
- Lata, P. and Kaur, I. (2019a), "Thermomechanical interactions in a transversely isotropic magnato thermoelastic solids with two temperature and rotation due to time harmonic sources", Coupl. Syst. Mech., 8(3), 219-245. https://doi.org/10.12989/csm.2019.8.3.219.
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane wavesin anisotropic thermoelastic medium", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.
- Lee, L.H. and Chang, W.J. (2009), "Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium", Physica E Low Dimens. Syst. Nanostruct., 41, 529-553. https://doi.org/10.1016/j.physe.2008.10.002.
- Lei, X.W., Natsuki, T., Shi, J.X. and Ni, Q.Q. (2012), "Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model", Compos. B. Eng., 43, 64-69. https://doi.org/10.1016/j.compositesb.2011.04.032.
- Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E Low Dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028.
- Moreno-Navarro, P., Ibrahimbegovic, A. and Perez-Aparicio, J.L. (2018), "Linear elastic mechanicsal system interacting with coupled thermo-electro-magnetic fields", Coupl. Syst. Mech., 7(1), 5-26. http://dx.doi.org/10.12989/csm.2018.7.1.005.
- Naceri, M., Zidour, M., Semmah, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2011), "Sound wave propagation in armchair single walled carbon nanotubes under thermal environment", J. Appl .Phys., 110, 124322. https://doi.org/10.1063/1.3671636.
- Narendar, S., Roy Mahapatra, D. and Gopalakrishnan, S. (2011), "Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation", Int. J. Eng. Sci., 49(6), 509-522. https://doi.org/10.1016/j.ijengsci.2011.01.002.
- Narender, S. and Gopalakrishnan, S. (2010), "Ultrasonic wave characteristics of a nanorods via nonlocal strain gradient models", J. Appl. Phys., 107, 084312. https://doi.org/10.1063/1.3345869.
- Pradhan, S.C. and Phadikar, J.K. (2009), "Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models", Phys. Lett. A., 373, 1062-1069. https://doi.org/10.1016/j.physleta.2009.01.030.
- Rukavina, I., Ibrahimbegovic, A., Do, X.N. and Markovic, D. (2019), "ED-FEM multi-scale computation procedure for localized failure", Coupl. Syst. Mech., 8(2), 111-128. http://dx.doi.org/10.12989/csm.2019.8.2.117.
- Saadatnia, Z. and Esmailzadeh, E. (2017), "Nonlinear harmonic vibration analysis of fluid-conveying piezoelectric-layered nanotubes", Compos. B. Eng., 23, 193-209. https://doi.org/10.1016/j.compositesb.2017.05.012.
- Sadeghi-Goughari, M., Jeon, S. and Kwon, H. (2017), "Effects of magnetic-fluid flow on structural instability of a carbon nanotube conveying nanoflow under a longitudinal magnetic field", Phys. Lett. A, 381(35), 2898-905. https://doi.org/10.1016/j.physleta.2017.06.054.
- Semmah, A., Anwar, B.O., Mahmoud, S.R., Houari, H. and Tounsi, A. (2014) "Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model", Adv Mat Res., 3(2), 77-89. https://doi.org/10.12989/amr.2014.3.2.077.
- Tokio, Y. (1995), "Recent development of carbon nanotube", Synth. Meter., 70, 1511-8. https://doi.org/10.1016/0379-6779(94)02939-V.
- Tu, Z.C. and Yang, Z.C.O. (2002), "Single-walled and multi-walled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number", Phys. Rev. B Condens. Matter., 65, 233407-4. https://doi.org/10.1103/PhysRevB.65.233407.
- Vlase, S., Marin, M., Ochsner, A. and Scutaru, M. L. (2019), "Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system", Contin. Mech. Thermodyn., 31(3), 715-724. https://ink.springer.com/article.10.1007/s00161-018-0722-y.
- Wang, L., Hu, H. and Guo, W. (2006), "Validation of the non-local elastic shell model for studying longitudinal waves in single-walled carbon nanotubes", Nanotechnol., 17, 1408-1415. https://doi.org/10.1088/0957-4484/17/5/041.
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124301-6. https://doi.org/10.1063/1.2141648.
- Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon Nanotubes with nonlocal continuum models", Phys. Lett. A., 357, 130-135. https://doi.org/10.1016/j.physleta.2006.04.026.
- Wu, Y., Zhang, X., Leung, A.Y.T. and Zhong, W. (2006), "An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes", Thin Wall. Struct., 44, 667-676. https://doi.org/10.1016/j.tws.2006.05.003.
- Yan, Z. and Jiang, L. (2011), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnol., 22(24), 245703. https://doi.org/10.1088/0957-4484/22/24/245703/meta.
- Zhang, D.P., Lei, Y. and Shen, Z.B. (2016), "Vibration analysis of horn-shaped single-walled carbon nanotubes embedded in viscoelastic medium under a longitudinal magnetic field", Int. J. Mech. Sci., 118, 219-230. https://doi.org/10.1016/j.ijmecsci.2016.09.025.
- Zhang, Y.O., Liu, X. and Liu, R.G. (2007), "Thermal effect on transverse vibrations of double walled carbon nanotubes", Nanotechnol., 18, 445701-7. https://doi.org/10.1088/0957-4484/18/44/445701/meta.
- Zhen, Y.X., Wen, S.L. and Tang, Y. (2019), "Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model", Physica E Low Dimens. Syst. Nanostruct., 105, 116-124. https://doi.org/10.1016/J.PHYSE.2018.09.005.
- Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0.