참고문헌
- Atkinson AC (1994). Fast very robust methods for the detection of multiple outliers, Journal of the American Statistical Association, 89, 1329-1339. https://doi.org/10.1080/01621459.1994.10476872
- Carrizosa E and Plastria F (1995). The determination of a least quantile of squares regression line for all quantiles, Computational Statistics & Data Analysis, 20, 467-479. https://doi.org/10.1016/0167-9473(94)00059-R
- Hadi AS and Simonoff JS (1993). Procedures for the identification of multiple outliers in linear models, Journal of the American Statistical Association, 88, 1264-1272. https://doi.org/10.1080/01621459.1993.10476407
- Hartigan JA (1981). Consistency of single linkage for high-density clusters, Journal of the American Statistical Association, 76, 388-394. https://doi.org/10.1080/01621459.1981.10477658
- Hawkins DM, Bradu D, and Kass GV (1984). Location of several outliers in multiple regression data using elemental sets, Technometrics, 26, 197-208. https://doi.org/10.1080/00401706.1984.10487956
- Jajo Nethal K (2005). A review of robust regression and diagnostic procedures in linear regression, Acta Mathematicae Applicatae Sinica, 21, 209-224. https://doi.org/10.1007/s10255-005-0230-2
- Kianifard F and Swallow WH (1989). Using recursive residuals, calculated on adaptive-ordered observations, to identify outliers in linear regression, Biometrics, 45, 571-885. https://doi.org/10.2307/2531498
- Kianifard F and Swallow WH (1990). A Monte Carlo comparison of five procedures for identifying outliers in linear regression, Communications in Statistics - Theory and Methods, 19, 1913-1938. https://doi.org/10.1080/03610929008830300
- Marasinghe MG (1985). A multistage procedure for detecting several outliers in linear regression, Technometrics, 27, 395-399. https://doi.org/10.1080/00401706.1985.10488078
- Paul SR and Fung KY (1991). A generalized extreme studentized residual multiple-outlier-detection procedure in linear regression, Technometrics, 33, 339-348. https://doi.org/10.1080/00401706.1991.10484839
- Pena D and Yohai VJ (1999). A fast procedure for outlier diagnostics in linear regression problems, Journal of the American Statistical Association, 94, 434-445. https://doi.org/10.2307/2670164
- Rosner B (1975). On the detection of many outliers, Technometrics, 17, 217-227.
- Rousseeuw PJ (1984). Least median of squares regression, Journal of the American Statistical Association, 79, 871-880. https://doi.org/10.1080/01621459.1984.10477105
- Rousseeuw PJ and Leroy AM (1987). Robust Regression and Outlier Detection, John Wiley & Sons, New York.
- Simonoff JS (1988). Detecting outlying cells in two-way contingency tables via backwards-stepping, Technometrics, 30, 339-345. https://doi.org/10.1080/00401706.1988.10488407
- Stromberg AJ (1993). Computing the exact least median of squares estimate and stability diagnostics in multiple linear regression, SIAM Journal on Scientific Computing, 14, 1289-1299. https://doi.org/10.1137/0914076
- Watson GA (1998). On computing the least quantile of squares estimate, SIAM Journal on Scientific Computing, 19, 1125-1138. https://doi.org/10.1137/S1064827595283768
- Yohai VJ (1987). High breakdown-point and high efficiency robust estimates for regression, Annals of Statistics, 15, 642-656. https://doi.org/10.1214/aos/1176350366