DOI QR코드

DOI QR Code

A Review: All Solid-state Electroactive Polymer-based Tunable Lens

고체 전기활성 고분자 기반 가변 렌즈의 연구동향

  • Shin, Eun-Jae (Korea University of Technology and Education) ;
  • Ko, Hyun-U (Korea University of Technology and Education) ;
  • Kim, Sang-Youn (Korea University of Technology and Education)
  • Received : 2020.11.24
  • Accepted : 2020.12.30
  • Published : 2021.02.26

Abstract

In this paper, we review papers which report to the all solid-state electroactive polymer-based tunable lens. Since electroactive polymer-based tunable lenses change their focal length by responding to electric stimuli, it can be minimized the size and weight of optical modules. Thus, it has been received attention in the robot, mobile device and display industry. The all solid-state electroactive polymer-based tunable lenses can be classified into two categories depending on the classification of materials: ionic electroactive polymer-based lenses and non-ionic electroactive polymer-based lenses. Most of the ionic electroactive polymer-based tunable lenses are fabricated with ionic polymer-metal composite. So, the ionic electroactive polymer-based tunable lenses can be operated under low electric voltage. But small force, slow recovery time and environmental limitation for operation has been pointed to the disadvantage of the lenses. The non-ionic electroactive polymer-based tunable lenses are classified again into two categories: dielectric polymer-based tunable lenses and polyvinylchloride gel-based tunable lenses. The advantage of the dielectric polymer-based tunable lenses is fast response to electric stimuli. But the essential flexible electrodes degrade performance of the lens. Polyvinylchloride gel-based tunable lens has reported impressive performance without flexible electrodes.

Keywords

References

  1. S. H. Choi, A. J. Duzik, H.-J. Kim, Y. J. Park, J. H. Kim, H.-U. Ko, H.-C. Kim, S. R. Yun, and K.-U. Kyung, "Perspective and potential of smart optical materials," Smart Materials and Structures, vol. 26, no. 9, 2017, DOI: 10.1088/1361-665X/aa7c32.
  2. K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Optics Express, vol. 12, no. 11, pp. 2494-2500, 2004, DOI: 10.1364/OPEX.12.002494.
  3. D. Zhu, C. Li, X. Zeng, and H. Jiang, "Tunable-focus microlens arrays on curved surfaces," Applied Physics Letters, vol. 96, pp. 94-97, 2010, DOI: 10.1063/1.3330965.
  4. W. Wang, J. Fang, and K. Varahramyan, "Compact variable focusing microlens with integrated thermal actuator and sensor," IEEE Photonics Technology Letters, vol. 17, no. 12, Dec., 2005, DOI: 10.1109/LPT.2005.859129.
  5. N. Chronis, G. L. Liu, K.-H. Jeong, and L. P. Lee, "Tunable liquidfilled microlens array integrated with microfluidic network," Optics Express, vol. 11, no. 19, pp. 2370-2378, 2003, DOI: 10.1364/OE.11.002370.
  6. N. Sugiura and S. Morita, "Variable-focus liquid-filled optical lens," Applied Optics, vol. 32, no. 22, pp.4181-4186, 1993, DOI: 10.1364/AO.32.004181.
  7. C. Li and H. Jiang, "Electrowetting-driven variable-focus microlens on flexible surfaces," Applied Physics Letters, vol. 100, no. 23, 2012, DOI: 10.1063/1.4726038.
  8. X. Hu, S. Zhang, Y. Liu, C. Qu, L. Lu, X. Ma, X. Zhang, and Y. Deng, "Electrowetting based infrared lens using ionic liquids." Applied Physics Letters, vol. 99, no. 21, 2011, DOI: 10.1063/1.3663633.
  9. J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, "Spherically encapsulated variable liquid lens on coplanar electrodes," IEEE Photonics Technology Letters, vol. 23, no. 22 2011, DOI: 10.1109/LPT.2011.2167606.
  10. C.-C. Cheng, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Optics Express, vol. 14, no. 9, 2006, DOI: 10.1364/OE.14.004101.
  11. C.-C. Cheng and J. A. Yehz, "Dielectrically actuated liquid lens," Optics Express, vol. 15, no. 12, 2007, DOI: 10.1364/OE.15.007140.
  12. C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, "Voltage-programmable liquid optical interface," Nature Photonics, vol. 3, pp.403-405, 2009, DOI: 10.1038/nphoton.2009.99.
  13. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, "Optofluidic lens with tunable focal length and asphericity," Scientific Reports, vol. 4, 2014, DOI: 10.1038/srep06378.
  14. N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, "Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses," Applied Physics Letters, vol. 93, no. 12, 2008, DOI: 10.1063/1.2988467.
  15. Y. Wang, H. Chen, Y. Wang, Z. Zhu, and D. Li, "Effect of dehydration on the mechanical and physicochemical properties of gold-and palladium-ionomeric polymer-metal composite (IPMC) actuators," Electrochimica Acta, vol. 129, pp. 450-458, 2014, DOI: 10.1016/j.electacta.2014.02.114.
  16. U. Deole, R. Lumia, M. Shahinpoor, and M. Bermudez, "Design and Test of Ipmc Artificial Muscle Microgripper," Journal of Micro-Nano Mechatronics, vol. 4, no. 3, pp. 95-102, 2008, DOI: 10.1007/s12213-008-0004-z.
  17. M. D. Green, D. Wang, S. T. Hemp, J.-H. Choi, K. I. Winey, J. R. Heflin, and T. E. Long, "Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers," Polymer, vol. 53, no. 17, pp. 3677-3686, 2012, DOI: 10.1016/j.polymer.2012.06.023.
  18. S.-J. Kim, C.-J. Kim, N.-C. Park, H.-S. Yang, Y.-P. Park, K.-H. Park, H.-K. Lee, and N.-J. Choi, "Design and position control of AF lens actuator for mobile phone using IPMC-EMIM," Electroactive Polymer Actuators and Devices vol. 6927, 2008, DOI: 10.1117/12.776342.
  19. S.-J. Kim, C.-J. Kim, N.-C. Park, H.-S. Yang, and Y. P. Park, "Design and control of 2-axis tilting actuator for endoscope using ionic polymer metal composites," Industrial and Commercial Applications of Smart Structures Technologies 2009, vol. 7290, 2009, DOI: 10.1117/12.815905.
  20. C. Kim, S.-J. Kim, H. Yang, N.-C. Park, and Y. P. Park, "An auto-focus lens actuator using ionic polymer metal composites: design, fabrication and control," International Journal of Precision Engineering and Manufacturing, vol. 13, no. 10, pp.1883-1887, 2012, DOI: 10.1007/s12541-012-0247-4.
  21. Q. Shen, S. Trabia, T. Stalbaum, V. Palmre, K. Kim, and I.-K. Oh, "A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation," Scientific Reports, vol. 6, 2016, DOI: 10.1038/srep24462.
  22. I. Shimizu, K. Kikuchi, and S. Tsuchitani, "Variable-focal length lens using IPMC," 2009 ICCAS-SICE, Fukuoka, Japan, pp. 4752-4756, 2009, [Online], https://ieeexplore.ieee.org/abstract/document/5334345/references#references.
  23. H.-K. Lee, N.-J. Choi, S. Jung, K.-H. Park, H. Jung, J.-K. Shim, J.-W. Ryu, and J. Kim, "Electroactive Polymer Actuator for Lens -Drive Unit in Auto-Focus Compact Camera Module," ETRI Journal, vol. 31, no. 6, pp. 695-702, 2009, DOI: 10.4218/etrij.09.1209.0023.
  24. E.-J. Shin, W.-H. Park, M. Yeo, J.W. Bae, and S.-Y. Kim, "Development of an Adaptive Lens Using an Ionic Polymermetal Composite," Korea Knowledge Information Technology Society, vol. 12, no. 4, pp. 491-500, 2017, [Online], http://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE08985011. https://doi.org/10.34163/jkits.2017.12.4.003
  25. Y. Wang, H. Chen, B. Luo, and Z. Zhu, "Design and optimization of small-sized actuators for driving optical lens with different shapes based on IPMCs," Electroactive Polymer Actuators and Devices (EAPAD) 2012, vol. 8340, 2012, DOI: 10.1117/12.917413.
  26. X. Bao, Y. Bar-Cohen, and S.-S. Lih, "Measurements and Macro Models of Ionomeric Polymer-Metal Composites (Ipmc)," Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), 2002, DOI: 10.1117/12.475167.
  27. M. Annabestani, M. Maymandi-Nejad, and N. Naghavi, "Restraining Ipmc Back Relaxation in Large Bending Displacements: Applying Non-Feedback Local Gaussian Disturbance by Patterned Electrodes," IEEE Transactions on Electron Devices, vol. 63, no. 4, pp. 1689-1695, 2016, DOI: 10.1109/TED.2016.2530144.
  28. P. C. Binh, D. N. C. Nam, and K. K. Ahn, "Design and modeling of an innovative wave energy converter using dielectric electro-active polymers generator," International Journal of Precision Engineering and Manufacturing, vol. 16, pp. 1833-1843, 2015, DOI: 10.1007/s12541-015-0239-2.
  29. J. M. Choi, H. M. Son, and Y.-J. Lee, "Biomimetic variablefocus lens system controlled by winding-type SMA actuator," Optics Express, vol. 17, no. 10, 2009, DOI: 10.1364/OE.17.008152.
  30. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. Crozier, Y. Huang, and J. Rogers, "Digital cameras with designs inspired by the arthropod eye," Nature, vol. 497, pp. 95-99, 2013, DOI: 10.1038/nature12083.
  31. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, "Tunable polymer lens," Optics Express, vol. 16, no. 16, 2008, DOI: 10.1364/OE.16.011847.
  32. K. K. Sadasivuni, D. Ponnamma, H. U. Ko, L. Zhai, H.-C. Kim, and J. Kim, "Electroactive and optically adaptive bionanocomposite for reconfigurable microlens," The Journal of Physical Chemistry, vol. 120, 2016, DOI: 10.1021/acs.jpcb.6b01370..
  33. F. Carpi, G. Frediani, S. Turco, and De D. de Rossi, "Bioinspired tunable lens with muscle-like electroactive elastomers," Advanced Functional Materials, vol. 21, no. 21, 2011, DOI: 10.1002/adfm.201101253.
  34. S. Nam, S. Park, S. Yun, B. Park, S. K. Park, and K.-U. Kyung, "Structure modulated electrostatic deformable mirror for focus and geometry control," Optics Express, vol. 24, no. 1, 2016, DOI: 10.1364/OE.24.000055.
  35. P.-H. Cu-Nguyen, A. Grewe, P. FeBer, A. Seifert, S. Sinzinger, and H. Zappe, "An imaging spectrometer employing tunable hyperchromatic microlenses," Light Science & Applications, vol. 5, 2015, DOI: 10.1038/lsa.2016.58.
  36. T. Hwang, H. Y. Kwon, J.-S. Oh, J.-P. Hong, S.-C. Hong, Y. Lee, H. R, Choi, K. J. Kim, M. H. Bhuiya, and J.-D. Nam, "Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens," Applied Physics Letters, vol. 103, no. 2, 2013, DOI: 10.1063/1.4812982.
  37. S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, "A thin film active-lens with translational control for dynamically programmable optical zoom," Applied Physics Letters, vol.107, no. 8, 2015, DOI: 10.1063/1.4929716.
  38. J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, "Highly stretchable and tough hydrogels," Nature, vol. 489, pp.133-136, 2012, DOI: 10.1038/nature11409.
  39. C. Keplinger, J.-Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. Suo, "Stretchable, transparent, ionic conductors," Science, vol. 341, no. 6149, pp.984-987, 2013, DOI: 10.1126/science.1240228.
  40. T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, "Electrically active artificial pupil showing amoeba-like pseudopodial deformation," Advanced Materials, vol. 21, no. 28, 2009, DOI: 10.1002/adma.200802217.
  41. H. J. Koo and B. M. Lee, "Human monitoring of phthalates and risk assessment," Journal of Toxicology and Environmental Health, Part A, vol. 68, no. 16, pp.1379-1392, 2005, DOI: 10.1080/15287390590956506.
  42. S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, "Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly (vinyl chloride)/dibutyl adipate gels," Smart Materials and Structures, vol. 24, no. 11, 2015, [Online], https://iopscience.iop.org/article/10.1088/0964-1726/24/11/115006/meta.
  43. J. W. Bae, E.-J. Shin, J. Jeong, D.-S. Choi, J. E. Lee, B. U. Nam, L. Lin, and S.-Y. Kim, "High-performance PVC gel for adaptive micro-lenses with variable focal length," Scientific Reports, vol. 7, no. 1, 2017, DOI: 10.1038/s41598-017-02324-9.
  44. D.-S. Choi, J. Jeong, E.-J. Shin, and S.-Y. Kim, "Focus-tunable double convex lens based on non-ionic electroactive gel," Optics Express, vol. 25, no. 17, 2017, DOI: 10.1364/OE.25.020133.
  45. J. W. Bae, M. Yeo, E.-J. Shin, W.-H. Park, J. E. Lee, B.-U. Nam, and S.-Y. Kim, "Eco-friendly plasticized poly (vinyl chloride)-acetyl tributyl citrate gels for varifocal lens," RSC Advances, vol. 5, no. 115, 2015, DOI: 10.1039/C5RA15304B.
  46. W.-H. Park, J. W. Bae, E.-J. Shin, and S.-Y. Kim, "Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly (vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices," Smart Materials and Structures, vol. 25, no. 11, 2016, [Online], https://iopscience.iop.org/article/10.1088/0964-1726/25/11/115020/meta.
  47. W.-H. Park, E.-J. Shin, S. Yun, and S.-Y. Kim, "An enhanced soft vibrotactile actuator based on ePVC gel with silicon dioxide nanoparticles," IEEE Transactions on Haptics, vol. 11, no. 1, pp. 22-29, 2018, DOI: 10.1109/TOH.2018.2808176.
  48. E.-J. Shin, W.-H. Park, and S.-Y. Kim, "Fabrication of a high-performance bending actuator made with a PVC gel," Applied Sciences, vol. 8, no. 8, 2018, DOI: 10.3390/app8081284.
  49. Cancer Research UK Cancer statistics reports for the UK 2003, [Online], https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk, Accessed: January 01, 2015.
  50. Working with Solvents, [Online], https://www.hse.gov.uk/pubns/indg273.pdf?q=solvents.
  51. F D Dick, Solvent Neurotoxicity, DOI: 10.1136/oem.2005.022400.
  52. E.-J. Shin, G. Shimoga, W.-H. Park, and S.-Y. Kim, "Development of solvent-free green PVC gel based varifocal micro-lens," Smart Materials and Structures, vol. 29, no. 8, 2020, [Online], https://iopscience.iop.org/article/10.1088/1361-665X/ab9f1c/meta.