DOI QR코드

DOI QR Code

Laboratory experiment of evolution of rip current according to the duration of successive ends of breaking wave crests

연속 쇄파선 끝단 지속시간에 따른 이안류 발달 수리실험 연구

  • Choi, Junwoo (Department of Land, Water and Environment research, Korea Institute of Civil Engineering & Building Technology)
  • 최준우 (한국건설기술연구원 국토보전연구본부)
  • Received : 2020.11.05
  • Accepted : 2020.11.23
  • Published : 2021.01.31

Abstract

The experiment of rip current at successive ends of breaking wave crests was conducted in a laboratory wave basin, and its time-varying evolution according to incident wave durations was observed by using ortho-rectified images. The experiment utilized the generation of a quasi nodal line of the honeycomb-pattern waves (i.e., intersecting wave trains) formed by out-of-phase motion of two piston-type wave makers arranged in the transverse direction, instead of the original honeycomb pattern waves which are generated when two wave trains propagate with slightly different wave directions. The particle moving distance and velocity caused by the rip current were measured by using the particle tracking technique. As a result, the rip current was survived for a while even without incident waves after its generation due to several successive ends of wave crests, and it moved the particles further out to sea.

연속된 쇄파 파봉선 끝단사이로 발달하는 이안류를 수리실험을 통해 재현하고 입사파 지속시간의 변화에 따른 이안류 발달 특성을 정사보정 영상을 통해 관찰하였다. 서로 다른 두 협각의 파랑 중첩에 의해 생성되는 벌집구조 파를 재현하는 대신에 조파장치를 횡방향 두 그룹으로 나누어 역 위상으로 구동시켜 규칙파를 조파하므로 유사 벌집구조 파형을 생성하여 실험을 수행하였다. 수리 실험에서 재현된 이안류의 생성과 발달 과정을 관찰하기 위해 정사보정 영상기반 입자 추적 기법을 사용하였으며, 이를 통해 이동거리와 속도를 관측하였다. 연속된 쇄파선 끝단이 해안으로 입사하여 이안류가 생성되지만, 이안류가 생성된 후 파랑이 더 이상 입사되지 않아도 상당시간 동안 이안류가 발달하여 입자들이 외해로 이동하는 것을 확인하였다.

Keywords

References

  1. Bowen, A., and Inman, D. (1969). "Rip currents 2. Laboratory and field observations." Journal of Geophysical Research, Vol. 74, No. C3, pp. 5479-5490. https://doi.org/10.1029/JC074i023p05479
  2. Castelle, B., Michallet, B., Marieu, V., Leckler, F., Dubardier, B., Lambert, A., Berni, C., Bonneton, P., Barthelemy, E., and Bouchette, F. (2010). "Laboratory experiment on rip current circulations over a moveable bed: Drifter measurements." Journal of Geophysical Research, Vol. 115, C12008.
  3. Choi, J., Kirby, J.T., and Yoon, S.B. (2015). "Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions." Coastal Engineering, Vol. 101, pp. 17-34. https://doi.org/10.1016/j.coastaleng.2015.04.005
  4. Choi, J., Park, W.K., Bae, J.S., and Yoon, S.B. (2012). "Numerical study on a dominant mechanism of rip current at Haeundae beach : Honeycomb pattern of waves." KSCE Journal of Civil and Environmental Engineering Research, Vol. 32, No. 5B, pp. 321-320.
  5. Choi, J., and Roh, M. (2021). "A laboratory experiment of rip currents between the ends of breaking wave crests." Coastal Engineering, Vol. 164, 103812, doi: 10.1016/j.coastaleng.2020.103812.
  6. Choi, J., Roh, M., and Hwang, H.S. (2018). "Observing the laboratory interaction of undertow and non-linear wave motion over barred and non-barred beaches to determine beach profile evolution in the surf zone." Journal of Coastal Research, Vol. 34, No. 6, pp. 1449-1459. https://doi.org/10.2112/jcoastres-d-17-00106.1
  7. Choi, J., Shin, C.H., and Yoon, S.B. (2013). "Numerical study on sea state parameters affecting rip current at Haeundae beach: Wave period, height, direction and tidal elevation." Journal of Korea Water Resources Association, Vol. 46, No. 2, pp. 205-218. https://doi.org/10.3741/JKWRA.2013.46.2.205
  8. Clark, D.B., Elgar, S., and Raubenheimer, B. (2012). "Vorticity generation by short-crested wave breaking." Geophysical Research Letters, Vol. 39, L24604, doi:10.1029/2012GL054034.
  9. Dalrymple, R.A. (1975). "A mechanism for rip current generation on an open coast." Journal of Geophysical Research, Vol. 80, pp. 3485-3487. https://doi.org/10.1029/JC080i024p03485
  10. Dalrymple, R.A. (1978). "Rip currents and their causes." 16th international Conference of Coastal Engineering, Hamburg, Germany, pp. 1414-1427.
  11. Dean, R.G. (1991). "Equilibrium beach profiles: Principle and applications." Journal of Coastal Research, Vol. 7, No. 1, pp. 53-84.
  12. Feddersen, F. (2014). "The generation of surfzone eddies in a strong alongshore current." Journal of Physical Oceanography, Vol. 44, pp. 600-617. https://doi.org/10.1175/JPO-D-13-051.1
  13. Haas, K.A., and Svendsen, I.A. (2002). "Laboratory measurements of the vertical structure of rip currents." Journal of Geophysical Research, Vol. 107, C53047.
  14. Haller, M., Dalrymple, R., and Svendsen, I.A. (1997). "Rip channels and nearshore circulation: Experiments." Proceedings of Coastal Dynamics, pp. 594-603.
  15. Heckbert, P.S. (1989). Fundamentals of texture mapping and image warping, Marter's Thesis, University of California, Berkeley, C.A., U.S.
  16. Johnson, D., and Pattiaratchi, C. (2006). "Boussinesq modelling of transient rip currents." Coastal Engineering, Vol. 53, pp. 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
  17. Kennedy, A.B., and Thomas, D. (2004). "Drifter measurements in a laboratory rip current." Journal of Geophysical Research, Vol. 109, C08005.
  18. Kriebel, D.L., Dally, W.R., and Dean, R.G. (1986). "Undistorted froude model for surf zone sediment transport." Coastal Engineering, Vol. 20, pp. 1296-1310.
  19. Peregrine, D.H. (1998). "Surf zone currents." Theoretical and Computational Fluid Dynamics, Vol. 10, pp. 295-309. https://doi.org/10.1007/s001620050065
  20. Peregrine, D.H. (1999). "Large-scale vorticity generation by breakers in shallow and deep water." European Journal of Mechanics - B/Fluids, Vol. 18, pp. 403-408. https://doi.org/10.1016/S0997-7546(99)80037-5
  21. Rouse, H. (1937). Nomogram for the settling velocity of spheres. National Research Council, Washington, DC, U.S., pp. 57-64.
  22. Shin, C.H., Noh, H.K., Yoon, S.B., and Choi, J. (2014). "Understanding of rip current generation mechanism at Haeundae Beach of Korea: Honeycomb waves." Journal of Coastal Research, Vol. 72, pp. 11-15. https://doi.org/10.2112/SI72-003.1
  23. Tang, E.-S., and Dalrymple, R.A. (1989). "Nearshore circulation: Rip currents and wave groups." Advances in Coastal and Ocean Engineering. Plenum Press, New York, N.Y., U.S., pp. 205-230.
  24. Wind, H.G., and Vreugdenhil, B.B. (1986). "Rip-current generation near structures." Journal of Fluid Mechanics, Vol. 171, pp. 459-476. https://doi.org/10.1017/S0022112086001520
  25. Yoon, S.B., Kwon, S.J., Bae, J.S., and Choi, J. (2012). "Investigation of characteristics of rip current at Haeundae beach based on observation analysis and numerical experiments." KSCE Journal of Civil and Environmental Engineering Research, Vol. 23, No. 4B, pp. 243-251.