East Asian Math. J.
Vol. 37 (2021), No. 1, pp. 131-140
YNMS
http://dx.doi.org/10.7858/eamj.2021.011

ON THE DEGENERATE MAXIMAL SURFACES IN \mathbb{L}^{4}

Seong-Kowan Hong

Abstract

The purpose of this paper is to investigate various kinds of degeneracy of maximal surfaces in \mathbb{L}^{4} in view of the generalized Gauss map.

1. Introduction

We adopt the notations in [5]. Denote by M a Riemannian surface, and define a maximal (spacelike) surface S in \mathbb{L}^{4} by an embedding $X: M \longrightarrow \mathbb{L}^{4}$, where local coordinates ξ^{1}, ξ^{2} on M serve as isothermal parameters for the surface and $z=\xi^{1}+i \xi^{2}$ as a complex coordinate on M. The Gauss map $\Phi(z)=\left(\phi_{1}(z), \phi_{2}(z), \phi_{3}(z), \phi_{4}(z)\right)$ from M into \mathbb{Q}_{+}^{2} is given in local complex coordinate on M as in [5]. We adopt terminologies about the causal character of a subspace of $\mathbb{C} P^{3}$ naturally according to the causal character of a subspace H of \mathbb{C}_{1}^{4} under the natural projection $\pi: \mathbb{C}_{1}^{4} \longrightarrow \mathbb{C} P^{3}$.

In this paper, we are concerned with maximal spacelike surfaces in \mathbb{L}^{4} with degenerate Gauss map. In the classical case in the Euclidean space \mathbb{R}^{4}, there are several types of degeneracy of the Gauss map. We can think of similar types of degeneracy of maximal spacelike surfaces in \mathbb{L}^{4}. The main purpose of this paper is to investigate various kinds of the degeneracy of maximal spacelike surfaces in \mathbb{L}^{4} in view of the generalized Gauss map.

2. On the Degenerate Maximal Surfaces

Definition 1. The maximal surface S lies fully in \mathbb{L}^{4} if the image $X(M)$ does not lie in any proper affine subspace of \mathbb{L}^{4}, and degenerate of the first kind if its Gaussian image $\Phi(M)$ lies fully in a spacelike subspace of $\mathbb{C} P^{3}$, degenerate of the second kind if its Gaussian image $\Phi(M)$ lies fully in a timelike subspace of $\mathbb{C} P^{3}$, degenerate of the third kind if its Gaussian image $\Phi(M)$ lies fully in a null subspace of $\mathbb{C} P^{3}$, and is k-degenerate if k is the largest integer such that

[^0]the image under Gauss map $\Phi(M)$ lies in a projective subspace of codimension k in $\mathbb{C} P^{3}$.

Remark 1. S is degenerate of the first kind if there exists a nonzero timelike vector $A=\left(a_{1}, \ldots, a_{4}\right)$ in \mathbb{C}_{1}^{4} such that

$$
\begin{equation*}
\sum_{j=1}^{4} \epsilon_{j} a_{j} \phi_{j} \equiv 0 \tag{1}
\end{equation*}
$$

Furthermore, S is 2-degenerate of the first kind if we can find exactly 2-orthonormal vectors A_{1}, A_{2} in \mathbb{C}_{1}^{4} for which such an equation holds, where A_{1} is timelike.
Proposition 2.1. Let S be a maximal surface in \mathbb{L}^{4}. Then
(1) S lies fully in \mathbb{L}^{4} if and only if it is locally real part of a complex analytic curve lying fully in \mathbb{C}_{1}^{4}.
(2) S is 2-degenerate if and only if it does not lie in a plane and is the direct sum of lightlike line in \mathbb{L}^{2} and a nonconstant complex or anti-analytic curve with respect to an orthonormal complex structure of \mathbb{R}^{2}.
(3) S is 3-degenerate if and only if it lies in a plane.

Proof. (1) If $X: M \longrightarrow \mathbb{L}^{4}$ defines a maximal spacelike surface in local isothermal parameters in a simply-connected domain D on M, then the coordinate functions x^{k} 's are harmonic on M. Hence there exists analytic functions f_{k} 's on D such that $x_{k}=\operatorname{Re} f_{k}, k=1,2,3,4$. Note that the metric on the analytic curve $\frac{1}{\sqrt{2}}\left(f_{1}, \ldots, f_{4}\right)$ induced from \mathbb{C}_{1}^{4} coincides with the metric on the original surface. Now the assertion follows immediately from the local isometric version of a maximal surface $\frac{1}{\sqrt{2}}\left(f_{1}, \ldots, f_{4}\right)$.
(2) Suppose S is 2-degenerate. If S lies on a plane, it is clearly 3-degenerate. If S is 2-degenerate, its image \hat{S} under the Gauss map lies in a complex line L, the intersection of two (non-degenerate or degenerate) hyperplanes of $\mathbb{C} P_{+}^{3}$. The line L must lie in \mathbb{Q}^{2} or else intersect \mathbb{Q}^{2} at isolated points. But in the latter case the Gauss map would be constant, and therefore S would be 3 -degenerate. Thus $\hat{S} \subset L \subset \mathbb{Q}^{2}$. Observe that the complex line L lies in the tangent hyperplane to \mathbb{Q}^{2} at any point, in other words, there is $A=\left(a_{1}, \ldots, a_{4}\right) \in \mathbb{Q}^{2}$ such that $\hat{S} \subset H: \sum_{k=1}^{4} \epsilon_{k} a_{k} z_{k} \equiv 0$. Denote $A=\alpha+i \beta$. Since $A \in \mathbb{Q}^{2}$, $<\alpha, \alpha>=<\beta, \beta>\geq 0,<\alpha, \beta>=0$. Two cases may occur; A is spacelike or lightlike.

Case 1. A is spacelike.
$\operatorname{Re} A$ and $\operatorname{Im} A$ are two orthogonal spacelike vectors in \mathbb{L}^{4}. Let

$$
\widetilde{e_{3}}=\frac{\alpha}{\sqrt{<\alpha, \alpha>}}, \tilde{e_{4}}=\frac{\beta}{\sqrt{<\beta, \beta>}} .
$$

Complete them to an orthonormal basis of \mathbb{L}^{4}. Then we will get

$$
X=\widetilde{x_{1}} \widetilde{e_{1}}+\widetilde{x_{2}} \widetilde{e_{2}}+\widetilde{x_{3}} \widetilde{e_{3}}+\widetilde{x_{4}} \widetilde{e_{4}},
$$

where

$$
\begin{aligned}
& \widetilde{x_{3}}=\frac{\left(\sum_{k} \epsilon_{k} \alpha_{k} x_{k}\right)}{\widetilde{\sqrt{<\alpha, \alpha>}},} \\
& \widetilde{x_{4}}=\frac{\left(\sum_{k} \epsilon_{k} \beta_{k} x_{k}\right)}{\sqrt{<\beta, \beta>}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\widetilde{\phi_{3}} & =\frac{\sum_{k} \epsilon_{k} \alpha_{k} \phi_{k}}{\sqrt{<\alpha, \alpha>}} \\
\widetilde{\phi_{4}} & =\frac{\sum_{k} \epsilon_{k} k_{k} \phi_{k}}{\sqrt{<\beta, \beta>}}
\end{aligned}
$$

Consequently,

$$
\widetilde{\phi_{3}}+i \tilde{\phi}_{4}=\frac{\left\{\sum_{k} \epsilon_{k}\left(\alpha_{k}+i \beta_{k}\right) \phi_{k}\right\}}{\sqrt{<\alpha, \alpha>}} \equiv 0
$$

which implies $\widetilde{x_{3}}+i \widetilde{x_{4}}$ is analytic. Note that neither $\widetilde{\phi}_{3}$ nor $\widetilde{\phi}_{4}$ is identically zero, and, in turn, implies $\widetilde{x_{3}}+i \widetilde{x_{4}}$ is not constant. ${\widetilde{\phi_{1}}}^{2}={\widetilde{\phi_{2}}}^{2}$, since $\sum_{k} \epsilon_{k} \phi_{k}{ }^{2} \equiv \sum_{k} \epsilon_{k}{\widetilde{\phi_{k}}}^{2} \equiv 0$. This implies $\widetilde{\phi_{1}} \equiv \widetilde{\phi_{2}}$ or $\widetilde{\phi_{1}} \equiv-\widetilde{\phi_{2}}$, where $\widetilde{\phi_{1}}$ is not identically zero. Otherwise S is 3 -degenerate. Hence $\left(\widetilde{x_{1}}, \widetilde{x_{2}}\right)$ defines a non-constant lightlike line in \mathbb{L}^{2} and ($\left.\widetilde{x_{3}}, \widetilde{x_{4}}\right)$ defines a nonconstant analytic curve in \mathbb{R}^{2} under the suitable orthogonal complex structure.

Case 2. A is lightlike.
Then both α and β are lightlike, and therefore they are linearly dependent. Therefore A can be considered as a real lightlike vector. By Proposition 2.6 [6], \hat{S} lies in the null hyperplane $z_{1}=z_{2}$ under a suitable orthogonal coordinate change in \mathbb{L}^{4}. Hence $\phi_{1}=\phi_{2}, \phi_{1} \neq 0$, and $\phi_{3}{ }^{2}+\phi_{4}{ }^{2}=0$. Therefore $\left(x_{1}, x_{2}\right)$ defines a lightlike line in \mathbb{L}^{2} and $\left(x_{3}, x_{4}\right)$ defines a nonconstant holomorphic or anti-holomorphic map with respect to an orthonormal complex structure.

The converse is trivial since the hypothesis imply ${\phi_{1}}^{2} \equiv \phi_{2}{ }^{2}, \phi_{3}{ }^{2}+$ $\phi_{4}{ }^{2} \equiv 0$ and $\phi_{1} \neq 0, \phi_{3} \neq 0$. Since it does not lie in a plane, $\phi_{1} \equiv c \phi_{3}$ for no $c \in \mathbb{C}$ and therefore S should be 2-generate.
(3) S is 3-degenerate if and only if \hat{S} is constant in $\mathbb{Q}_{+}^{2} \subset \mathbb{C} P_{+}^{3}$. In fact, only the first kind of degeneration is possible, since \hat{S} is in \mathbb{Q}_{+}^{2}. In turn, \hat{S} is constant if and only if S has the same tangent space everywhere, which is equivalent to the statement that S lies on a plane in \mathbb{L}^{4}.

Theorem 2.2. Let M be a Riemann surface, F a non-constant meromorphic function on M, h a (non-constant) harmornic function on M, and c a complex constant. Suppose they satisfy the following:
(1) $|c|<1$;
(2) the analytic differential ω defined on M in terms of a local parameter $z=\xi^{1}+i \xi^{2} b y$

$$
\begin{equation*}
\omega=\left(\frac{\partial h}{\partial \xi^{1}}-i \frac{\partial h}{\partial \xi^{2}}\right) \tag{2}
\end{equation*}
$$

has zeros coinciding in position and order with zeros and poles of F;
(3) if c is not real, then h has single-valued harmonic conjugate on M;
(4) if we denote

$$
\begin{equation*}
d=c^{2}-1 \tag{3}
\end{equation*}
$$

then for every closed curve C on M,

$$
\begin{equation*}
\int_{C} \frac{d}{F} \omega=-\overline{\int_{C} F \omega} \tag{4}
\end{equation*}
$$

Then the surface $X: M \longrightarrow \mathbb{L}^{4}$ defined by

$$
\begin{equation*}
X=R e \int\left(-c, 1, \frac{1}{2}\left(\frac{d}{F}+F\right), \frac{i}{2}\left(\frac{d}{F}-F\right)\right) \omega \tag{5}
\end{equation*}
$$

is a 1-degenerate maximal surface of the first kind. Here the integral is taken from a fixed point to a variable point M along an arbitrary path.

Conversely, to a 1-degenerate maximal surface \mathbb{S} of the first kind in \mathbb{L}^{4}, we may assign a quadruple $\{M, F, h, c\}$ which satisfies the hypotheses. The surface \mathbb{S} is given, up to congruence, by (5).

Proof. Suppose a quadruple $\{M, F, h, c\}$ satisfies the hypotheses i) - iv). Then for the holomophic 1-form $\omega, \operatorname{Re} \int_{C} \omega=0$ for any closed smooth curve in M. iv) guarantees $\operatorname{Re} \int \frac{1}{2}\left(\frac{d}{F}+F\right) \omega=\operatorname{Re} \int \frac{i}{2}\left(\frac{d}{F}-F\right) \omega=0$ for any closed curve in M. Hence (5) gives us a well-defined map $X: M \rightarrow \mathbb{L}^{4}$. Since M is locally simply-connected, x_{k} is a real part a holomorphic map, $\frac{\partial x_{k}}{\partial \xi^{1}}-i \frac{\partial x_{k}}{\partial \xi^{2}}=\phi_{k}$ is also holomorphic and ϕ_{k} is the ontegrand in (5). Directly from (5),

$$
-{\phi_{1}}^{2}+{\phi_{2}}^{2}+{\phi_{3}}^{2}+\phi_{4}^{2}=\left(1-c^{2}+d\right) \phi_{2}^{2}=0,
$$

and

$$
\sum_{k=1}^{4} \epsilon_{k}\left|\phi_{k}\right|^{2}>0
$$

Hence (5) defines a maximal surface in \mathbb{L}^{4}. Since $\phi_{1}=-c \phi_{2}, S$ is degenerate. We have to show S is exactly 1-degenerate of the first kind. Suppose $\sum \epsilon_{k} a_{k} \phi_{k} \equiv$ 0 , where $\phi_{1}=-c \phi_{2}, \phi_{3}{ }^{2}+\phi_{4}{ }^{2}=d \phi_{2}{ }^{2}, d=c^{2}-1$, and $|c|<1$. Here ϕ_{2} is not identically zero since h is nonconstant. $\sum \epsilon_{k} a_{k} \phi_{k} \equiv 0$ means that

$$
2\left(a_{1} c+a_{2}\right) F+d\left(a_{3}+i a_{4}\right)+F^{2}\left(a_{3}-i a_{4}\right) \equiv 0 .
$$

If $a_{3}-i a_{4} \neq 0$, then $F \equiv$ constant, a contradiction. Hence $a_{3}=i a_{4}$. Also $a_{1}+a_{2}=0$, i.e. $a_{2}=-a_{1} c$. Consequently, $\sum \epsilon_{k} a_{k} \phi_{k}=0$ implies

$$
\begin{aligned}
-a_{1} \phi_{1}-a_{1} c \phi_{2}+a_{3} \phi_{3}+a_{4} \phi_{4} & =-a_{1}\left(\phi_{1}+c \phi_{2}\right)+a_{4}\left(i \phi_{3}+\phi_{4}\right) \\
& =a_{4}\left(i \phi_{3}+\phi_{4}\right)=0
\end{aligned}
$$

If $a_{4} \neq 0$, then $i \phi_{3}+\phi_{4}=0$ which implies $d=c^{2}-1=0$, a contradiction to the fact that $c \neq \pm 1$. Hence $a_{3}=a_{4}=0$. The vector $\left(a_{1},-c a_{1}, 0,0\right)$ is clearly timelike since $|c|<1$ and therefore there is only one timelike vector (up to complex multiple) which satisfies the linear equation $\sum \epsilon_{k} a_{k} \phi_{k} \equiv 0$.

Suppose S is a 1-degenerate maximal surface of the first kind. Then there is an orthonormal basis of \mathbb{L}^{4} with respect to which the Gauss map of S satisfies

$$
\begin{array}{ll}
\phi_{1} & =c \phi_{2}, \\
\phi_{3}{ }^{2} & +\phi_{4}{ }^{2}=d \phi^{2}, \\
d & =c^{2}-1
\end{array}
$$

with respect to a local isothermal parameter $z=\xi^{1}+i \xi^{2}$ on S. Since S does not lie in a plane in \mathbb{L}^{4}, ϕ_{1} is not identically zero. Thus the function $F=$ $\frac{\phi_{3}+i \phi_{4}}{\phi_{2}}$ is meromorphic in S. F cannot be identically zero. For it would imply $\phi_{3}{ }^{2}+\phi_{4}{ }^{2} \equiv 0,-\phi_{1}{ }^{2}+\phi_{2}{ }^{2} \equiv 0$, and also imply that S cannot be 1-degenerate, which is contrary to the assumption. Similarly $c \neq \pm 1$, since $c= \pm 1$ implies $\phi_{1}= \pm \phi_{2}$ and $\phi_{3}{ }^{2}+\phi_{4}{ }^{2} \equiv 0$. From $\phi_{3}{ }^{2}+\phi_{4}{ }^{2}=\left(\phi_{3}+i \phi_{4}\right)\left(\phi_{3}-i \phi_{4}\right)=d \phi^{2}$, we have $\phi_{3}-i \phi_{4}=\frac{d}{F} \phi_{2}$, and $\phi_{3}+i \phi_{4}=F \phi_{2}$. Hence we find

$$
\begin{aligned}
\phi_{3} & =\frac{1}{2}\left(\frac{d}{F}+F\right) \phi_{2}, \\
\phi_{4} & =\frac{i}{2}\left(\frac{d}{F}-F\right) \phi_{2} .
\end{aligned}
$$

Now the Gauss map takes the form

$$
\Phi=\phi\left(-c, 1, \frac{1}{2}\left(\frac{d}{F}+F\right), \frac{i}{2}\left(\frac{d}{F}-F\right)\right)
$$

If F were constant, the Gauss map would be constant, but that is not the case. Put $h=x_{2}$. Then $\omega=\phi_{2} d z$, and (5) follows from the fact that $X=R e \int \Phi d z$. Since X is single-valued on S, for any closed curve in S,

$$
\operatorname{Re} \int \frac{1}{2}\left(\frac{d}{F}+F\right) \omega=\operatorname{Re} \int \frac{i}{2}\left(\frac{d}{F}-F\right) \omega=0
$$

from which we can get

$$
\int \frac{d}{F} \omega=-\overline{\int F \omega}
$$

Similarly, $\operatorname{Re} \int \omega=\operatorname{Re} \int-c \omega=0$ implies $\int \phi_{2} d z=0$ for any closed curve in S if c is not real. It follows that the harmonic conjugate of h, say

$$
\int \frac{\partial h}{\partial \xi^{1}} d \xi^{1}-\frac{\partial h}{\partial \xi^{2}} d \xi^{2}
$$

is single-valued in S.
Theorem 2.3. (1) Let M be a Riemann surface, F a non-constant meromorphic function on M, ha (non-constant) harmornic function on M, and c a complex constant. Suppose they satisfy the following:
(a) $|c|<1, c \neq \pm i$;
(b) the analytic differential ω defined on M in terms of a local parameter $z=\xi^{1}+i \xi^{2}$ by

$$
\begin{equation*}
\omega=\left(\frac{\partial h}{\partial \xi^{1}}-i \frac{\partial h}{\partial \xi^{2}}\right) d z \tag{6}
\end{equation*}
$$

has zeros coinciding in position and order with zeros and poles of F;
(c) if c is not real, then h has single-valued harmonic conjugate on M;
(d) if

$$
\begin{equation*}
d=c^{2}+1, \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re} \int_{C} F \omega=\operatorname{Re} \int_{C} \frac{d}{F} \omega=0 \tag{8}
\end{equation*}
$$

for every closed curve C on M,
Then the surface $X: M \longrightarrow \mathbb{L}^{4}$ defined by

$$
\begin{equation*}
X=\operatorname{Re} \int\left(\frac{1}{2}\left(F-\frac{d}{F}\right), \frac{1}{2}\left(F+\frac{d}{F}\right), 1, c\right) \omega \tag{9}
\end{equation*}
$$

is a 1-degenerate maximal surface of the second kind and its Gaussian image lies in a hyperplane which is $S O(1,3)$-equivalent to $c z_{3}-z_{4}=0$, $|c| \leq 1, c \neq \pm i$. Here the integral is taken from a fixed point to a variable point M along an arbitrary path.

Conversely, let S be a 1-degenerate maximal surface of the second kind which lies in a hyperplane that is $S O(1,3)$-equivalent to $c z_{3}-z_{4}=0$, $|c| \leq 1, c \neq \pm i$. To such an S, we may assign a quadruple $\{M, F, h, c\}$ which satisfies the hypotheses. The surface \mathbb{S} is actually given, up to congruence, by (9).
(2) Let M be a Riemann surface, F a non-constant meromorphic function on M, h a (non-constant) harmornic function on M, and c a complex constant. Suppose they satisfy the following:
(a) $|c|<1$;
(b) the analytic differential ω defined on M in terms of a local parameter $z=\xi^{1}+i \xi^{2}$ by

$$
\begin{equation*}
\omega=\left(\frac{\partial h}{\partial \xi^{1}}-i \frac{\partial h}{\partial \xi^{2}}\right) d z \tag{10}
\end{equation*}
$$

has zeros coinciding in position and order with zeros and poles of F;
(c) if c is not real, then h has a single-valued harmonic conjugate on M;
(d) if

$$
\begin{equation*}
d=-c^{2}+1, \tag{11}
\end{equation*}
$$

then

$$
\begin{equation*}
-\overline{\int_{C} F \omega}=\int_{C} \frac{d}{F} \omega \tag{12}
\end{equation*}
$$

for every closed curve C on M.
Then the surface $X: M \longrightarrow \mathbb{L}^{4}$ defined by

$$
\begin{equation*}
X=\operatorname{Re} \int\left(1,-c, \frac{1}{2}\left(F+\frac{d}{F}\right), \frac{i}{2}\left(\frac{d}{F}-F\right),\right) \omega \tag{13}
\end{equation*}
$$

is a 1-degenerate maximal surface of the second kind and its Gaussian image lies in a hyperplane which is $S O(1,3)$-equivalent to $c z_{1}+z_{2}=0$, $|c|<1$. Here the integral is taken from a fixed point to a variable point M along an arbitrary path.

Conversely, let S be a 1-degenerate maximal surface of the second kind which lies in a hyperplane that is $S O(1,3)$-equivalent to $c z_{1}+z_{2}=$ $0,|c|<1$. To such an S, we may assign a quadruple $\{M, F, h, c\}$ which satisfies the hypotheses. The surface S is actually given, up to congruence, by (13).
(3) Let M be a Riemann surface, F a non-constant meromorphic function on M, g and h a (non-constant) harmonic function on M. Suppose they satisfy the following:
(a) the analytic differential λ defined on M in terms of a local parameter $z=\xi^{1}+i \xi^{2} b y$

$$
\begin{equation*}
\lambda=\left(\frac{\partial g}{\partial \xi^{1}}-i \frac{\partial g}{\partial \xi^{2}}\right) d z=\psi d z \tag{14}
\end{equation*}
$$

has zeros coinciding in position and order with zeros of F;
(b) the analytic differential μ defined on M in terms of a local parameter $z=\xi^{1}+i \xi^{2}$ by

$$
\begin{equation*}
\mu=\left(\frac{\partial h}{\partial \xi^{1}}-i \frac{\partial h}{\partial \xi^{2}}\right) d z=\Psi d z \tag{15}
\end{equation*}
$$

has zeros coinciding in position and order with poles of F;
(c)

$$
\begin{align*}
& F \Psi+\frac{\psi}{F}=-\sqrt{2} i \Psi \tag{16}\\
& |F \Psi|^{2}-2 \operatorname{Re}(\psi \Psi)+\left|\frac{\psi}{F}\right|^{2}>0
\end{align*}
$$

(d) for every closed curve C on M,

$$
\begin{equation*}
\int_{C} F \mu=-\overline{\int_{C} \frac{\lambda}{F}} \tag{17}
\end{equation*}
$$

Then the surface $X: M \longrightarrow \mathbb{L}^{4}$ defined by

$$
\begin{equation*}
X=\frac{1}{2} R e \int(1,-1, F,-i F) \mu+\frac{1}{2} R e \int\left(1,1, \frac{1}{F}, \frac{i}{F}\right) \lambda \tag{18}
\end{equation*}
$$

is a 1-degenerate maximal surface of the second kind and its Gaussian image lies in a hyperplane which is $S O(1,3)$-equivalent to $-z_{1}+z_{2}+$ $\sqrt{2} z^{3}=0$. Here the integral is taken from a fixed point to a variable point M along an arbitrary path.

Conversely, let S be a 1-degenerate maximal surface of the second kind which lies in a hyperplane that is $S O(1,3)$-equivalent to $-z_{1}+z_{2}+$ $\sqrt{2} z^{3}=0$. To such an S, we may assign a quadruple $\{M, F, g, h\}$ which satisfies the hypotheses. The surface S is actually given, up to congruence, by (18).

Proof. (1) Put $F=\frac{\phi_{1}+\phi_{2}}{\phi_{3}}$.
(2) Put $F=\frac{\phi_{3}+i \phi_{4}}{\phi_{1}}$.
(3) Since g and h are harmonic functions on $M, \operatorname{Re} \int_{C} \lambda=\operatorname{Re} \int_{C} \mu=0$ for any closed (smooth) curve in M. Also iv) guarantees

$$
\operatorname{Re} \int_{C}\left(F \mu+\frac{\lambda}{F}\right)=\operatorname{Re} \int_{C} i\left(-F \mu+\frac{\lambda}{F}\right)=0
$$

Hence (18) gives us a well-defined map $X: M \rightarrow \mathbb{L}^{4}$. Since $g=$ $R e \int \psi d z, h=R e \int \Psi d z$, we obtain $x_{1}=\frac{1}{2}(g+h)$, and $x_{2}=\frac{1}{2}(g-h)$. Since M is locally simply-connected and all of the integrands in (18) are holomorphic on M, all x_{k} 's are harmonic and hence $\phi_{k}=\frac{\partial x_{k}}{\partial \xi^{1}}-i \frac{\partial x_{k}}{\partial \xi^{2}}$ are holomorphic for $1 \leq k \leq 4$, and ϕ_{k} is the integrand in (18). Directly from (18),

$$
\begin{aligned}
- & \phi_{1}{ }^{2}+\phi_{2}{ }^{2}+\phi_{3}{ }^{2}+\phi_{4}{ }^{2} \\
& =\frac{1}{4}\left\{-(\psi+\Psi)^{2}+(\psi-\Psi)^{2}+\left(F \Psi+\frac{\psi}{F}\right)^{2}-\left(-F \Psi+\frac{\psi}{F}\right)^{2}\right\} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
& -\quad\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}+\left|\phi_{4}\right|^{2} \\
& \quad=\frac{1}{2}\left(|F \Psi|^{2}-\left(2 \operatorname{Re}(\psi \Psi)+\left|\frac{\psi}{F}\right|^{2}\right)>0 .\right.
\end{aligned}
$$

Hence $X: M \longrightarrow \mathbb{L}^{4}$ defines a maximal surface in \mathbb{L}^{4}. Now we prove that it is exactly 1 -degenerate of the second kind. Suppose $\sum \epsilon_{k} a_{k} \phi_{k} \equiv$ 0 . Since $F \Psi+\frac{\psi}{F}=-\sqrt{2} i \Psi$, it follows that $\psi=\left(F^{2}-\sqrt{2} i F\right) \Psi$ except isolated points. Note that neither Ψ nor ψ is identically zero. Let

$$
\begin{aligned}
\alpha & =-a_{1}-a_{2}-\sqrt{2} i a_{3}+\sqrt{2} a_{4}, \\
\beta & =\sqrt{2} i a_{1}-\sqrt{2} i a_{2}-2 i a_{4}, \\
\gamma & =-a_{1}+a_{2} .
\end{aligned}
$$

Then $0 \equiv 2 \sum \epsilon_{k} a_{k} \phi_{k} \equiv \alpha \Psi+\beta F \Psi+\gamma F^{2} \Psi$. Since Ψ is not identically zero, we have the quadratic equation of F with the form $\alpha+\beta F+\gamma F^{2} \equiv$ 0 , where α, β, γ are defined as above. Since F is not constant, all the coefficients are zeros, otherwise F would be constant in terms of a_{1}, a_{2}, a_{3}, a_{4}. Hence we obtain

$$
a_{1}=a_{2}=a, a_{4}=0, a_{3}=\frac{i}{\sqrt{2}}\left(a_{1}+a_{2}\right)=\sqrt{2} i a
$$

There is only one, up to a linear factor, spacelike vector $(1,1, \sqrt{2} i, 0)$ which satisfies the equation (1). Hence S is a 1-degenerate maximal surface of the second kind.

We will prove the converse. Hypotheses guarantees the existence of an orthonormal basis of \mathbb{L}^{4} with respect to which the Gauss nap of S satisfies $\phi_{3}=\frac{i}{\sqrt{2}}\left(\phi_{2}-\phi_{1}\right)$ with respect to a local isothermal parameter $z=\xi^{1}+i \xi^{2}$ on M. If $\phi_{2}-\phi_{1} \equiv 0$, then $\phi_{3} \equiv \phi_{4} \equiv 0$. This would imply that the Gauss map is constant. In the similar way we can show $\phi_{1}+\phi_{2}$ does not vanish everywhere. Thus the function

$$
F=\frac{\phi_{3}+i \phi_{4}}{\phi_{1}-\phi_{2}}=\frac{\phi_{1}+\phi_{2}}{\phi_{3}-i \phi_{4}}
$$

is meromorphic on M. F does not vanish everywhere, otherwise $0 \equiv$ $\phi_{3}{ }^{2}+\phi_{4}{ }^{2} \equiv{\phi_{1}}^{2}+{\phi_{2}}^{2}$ would imply either $\phi_{1}+\phi_{2} \equiv 0$ or $\phi_{1}-\phi_{2} \equiv 0$. If F is constant, then the Gauss map would be constant, that is, S could not be 1-degenerate. Consider the map $X: M \longrightarrow \mathbb{L}^{4}$ defines a maximal surface S. Define $g=x_{1}+x_{2}, h=x_{1}-x_{2}$ so that both become harmonic maps on M. Note that neither of them is constant, because none of $\phi_{1}-\phi_{2}$ and $\phi_{1}+\phi_{2}$ vanish everywhere. Define $\psi=\frac{\partial g}{\partial \xi^{1}}-i \frac{\partial g}{\partial \xi^{2}}$ and $\Psi=\frac{\partial h}{\partial \xi^{1}}-i \frac{\partial h}{\partial \xi^{2}}$. Then

$$
\begin{equation*}
\psi=\phi_{1}+\phi_{2}, \Psi=\phi_{1}-\phi_{2} . \tag{19}
\end{equation*}
$$

According to the definition of F,

$$
\begin{equation*}
\phi_{3}+i \phi_{4}=F \Psi, \phi_{3}-i \phi_{4}=\frac{\psi}{F} . \tag{20}
\end{equation*}
$$

Note here $F \Psi$ and $\frac{\psi}{F}$ are holomorphic on M, and therefore the hypotheses (a) and (b) are satisfied. From (19) and (20) we obtain

$$
\begin{align*}
\phi_{1} & =\frac{1}{2}(\psi+\Psi), \\
\phi_{2} & =\frac{1}{2}(\psi-\Psi), \\
\phi_{3} & =\frac{1}{2}\left(F \Psi+\frac{\psi}{F}\right), \tag{21}\\
\phi_{1} & =\frac{i}{2}\left(\frac{\psi}{F}-F \Psi\right) .
\end{align*}
$$

Direct computation shows (c) is also satisfied. Since $X=R e \int \Phi d z$, (18) follows easily up to the choice of a fixed point and a path to a variable point from it, in other words, up to a congruence in \mathbb{L}^{4}. For any closed curve C on $M, \operatorname{Re} \int_{C}\left(F \mu+\frac{\lambda}{F}\right) \equiv 0$, that is $\int_{C} F \mu+\overline{\int_{C} \frac{\lambda}{F}} \equiv 0$ and therefore (d) is satisfied.

Theorem 2.4. Let M be a Riemann surface, F a non-constant meromorphic function on M, h a (non-constant) harmornic function on M. Suppose they satisfy the following:
(1) the analytic differential ω defined on M in terms of a local parameter $z=\xi^{1}+i \xi^{2} b y$

$$
\begin{equation*}
\omega=\left(\frac{\partial h}{\partial \xi^{1}}-i \frac{\partial h}{\partial \xi^{2}}\right) d z \tag{22}
\end{equation*}
$$

has zeros coinciding in position and order with zeros and poles of F;
(2) h has a single-valued harmonic conjugate on M;
(3) for every closed curve C on M,

$$
\begin{equation*}
\int_{C} F \omega=2 \overline{\int_{C} \frac{\omega}{F}} \tag{23}
\end{equation*}
$$

Then the surface $X: M \longrightarrow \mathbb{L}^{4}$ defined by

$$
\begin{equation*}
X=\operatorname{Re} \int\left(i, 1, \frac{1}{2}\left(F-\frac{2}{F}\right),-\frac{i}{2}\left(F+\frac{2}{F}\right)\right) \omega \tag{24}
\end{equation*}
$$

is a 1-degenerate maximal surface of the third kind. Here the integral is taken from a fixed point to a variable point M along an arbitrary path.

Conversely, to a 1-degenerate maximal surface S of the third kind in \mathbb{L}^{4}, we may assign a triple $\{M, F, h\}$ which satisfies the hypotheses. The surface S is actually given, up to congruence, by (24).
Proof. Put $F=\frac{\phi_{3}+i \phi_{4}}{\phi_{2}}$ and $x_{2}=h$.

References

[1] Abe, K. and Magid, M., Indefinite Rigidity of Complex Submanifold and Maximal Surfaces, Mathematical Proceedings of Cambridge Philosophical Society 106 (1989), no. 3, 481-494
[2] Akutagawa, K. and Nishigawa, S., The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Tohoku Mathematical Journal 42 (1990), no. 1, 67-82.
[3] Asperti, Antonio C. and Vilhena, Jose Antonio M., Spacelike Surfaces in L^{4} with Degenerate Gauss Map, Results in Mathematics 60 (2011), no. 1, 185-211.
[4] Graves, L., Codimension One Isometric Immersions between Lorentz Spaces, Ph.D. Thesis, Brown University, 1977.
[5] Hong, SK., On the Indefinite Quadric \mathbb{Q}_{+}^{n-2}, East Asian Math. Journal 32 (2016), no. 1, 93-100.
[6] -, On the Degenerate Maximal Spacelike Surfaces, East Asian Math. Journal 35 (2019), no. 1, 109-115.
[7] Kobayasi, O., Maximal Surfaces in the 3-dimensional Minkowski Space L ${ }^{3}$, Tokyo J. Math. 6 (1983), 297-309.
[8] Milnor, T. K., Harmonic Maps and Classical Surface Theory in Minkowski 3-space, Trans. of AMS 280 (1983), 161-185.
[9] O'Neil, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
[10] Osserman, R., A Survey of Minimal Surfaces, Dover, New York, 1986
Seong-Kowan Hong
Department of Mathematics Education, Pusan National University, Busan, 46241, Republic of Korea

E-mail address: aromhong@hanafos.com

[^0]: Received January 6, 2021; Accepted January 25, 2021.
 2010 Mathematics Subject Classification. 53B30, 53C50.
 Key words and phrases. spacelike surface, the generalized Gauss map, degenerate maximal surface.

 This work was supported by a 2-Year Research Grant of Pusan National University.

