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ON THE DEGENERATE MAXIMAL SURFACES IN L4

Seong-Kowan Hong

Abstract. The purpose of this paper is to investigate various kinds of
degeneracy of maximal surfaces in L4 in view of the generalized Gauss

map.

1. Introduction

We adopt the notations in [5]. Denote by M a Riemannian surface, and
define a maximal (spacelike) surface S in L4 by an embedding X : M −→ L4,
where local coordinates ξ1 , ξ2 on M serve as isothermal parameters for the
surface and z = ξ1 + iξ2 as a complex coordinate on M . The Gauss map
Φ(z) = (φ1(z), φ2(z), φ3(z), φ4(z)) from M into Q2

+ is given in local complex
coordinate on M as in [5]. We adopt terminologies about the causal character
of a subspace of CP 3 naturally according to the causal character of a subspace
H of C4

1 under the natural projection π : C4
1 −→ CP 3.

In this paper, we are concerned with maximal spacelike surfaces in L4 with
degenerate Gauss map. In the classical case in the Euclidean space R4, there
are several types of degeneracy of the Gauss map. We can think of similar types
of degeneracy of maximal spacelike surfaces in L4. The main purpose of this
paper is to investigate various kinds of the degeneracy of maximal spacelike
surfaces in L4 in view of the generalized Gauss map.

2. On the Degenerate Maximal Surfaces

Definition 1. The maximal surface S lies fully in L4 if the image X(M) does
not lie in any proper affine subspace of L4, and degenerate of the first kind if
its Gaussian image Φ(M) lies fully in a spacelike subspace of CP 3, degenerate
of the second kind if its Gaussian image Φ(M) lies fully in a timelike subspace
of CP 3, degenerate of the third kind if its Gaussian image Φ(M) lies fully in a
null subspace of CP 3, and is k-degenerate if k is the largest integer such that
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the image under Gauss map Φ(M) lies in a projective subspace of codimension
k in CP 3.

Remark 1. S is degenerate of the first kind if there exists a nonzero timelike
vector A = (a1, . . . , a4) in C4

1 such that

4∑
j=1

εjajφj ≡ 0 . (1)

Furthermore, S is 2-degenerate of the first kind if we can find exactly 2-orthonormal
vectors A1 , A2 in C4

1 for which such an equation holds, where A1 is timelike.

Proposition 2.1. Let S be a maximal surface in L4. Then

(1) S lies fully in L4 if and only if it is locally real part of a complex analytic
curve lying fully in C4

1.
(2) S is 2-degenerate if and only if it does not lie in a plane and is the direct

sum of lightlike line in L2 and a nonconstant complex or anti-analytic
curve with respect to an orthonormal complex structure of R2.

(3) S is 3-degenerate if and only if it lies in a plane.

Proof. (1) If X : M −→ L4 defines a maximal spacelike surface in local
isothermal parameters in a simply-connected domain D on M , then the
coordinate functions xk’s are harmonic on M . Hence there exists an-
alytic functions fk’s on D such that xk = Refk, k = 1, 2, 3, 4. Note
that the metric on the analytic curve 1√

2
(f1, . . . , f4) induced from C4

1

coincides with the metric on the original surface. Now the assertion fol-
lows immediately from the local isometric version of a maximal surface
1√
2
(f1, . . . , f4).

(2) Suppose S is 2-degenerate. If S lies on a plane, it is clearly 3-degenerate.

If S is 2-degenerate, its image Ŝ under the Gauss map lies in a com-
plex line L, the intersection of two (non-degenerate or degenerate) hy-
perplanes of CP 3

+. The line L must lie in Q2 or else intersect Q2 at
isolated points. But in the latter case the Gauss map would be con-
stant, and therefore S would be 3-degenerate. Thus Ŝ ⊂ L ⊂ Q2.
Observe that the complex line L lies in the tangent hyperplane to Q2

at any point, in other words, there is A = (a1, . . . , a4) ∈ Q2 such that

Ŝ ⊂ H :
∑4
k=1 εkakzk ≡ 0. Denote A = α + iβ. Since A ∈ Q2,

< α,α >=< β, β >≥ 0, < α, β >= 0. Two cases may occur; A is
spacelike or lightlike.

Case 1. A is spacelike.
ReA and ImA are two orthogonal spacelike vectors in L4. Let

ẽ3 =
α

√
< α,α >

, ẽ4 =
β√

< β, β >
.

Complete them to an orthonormal basis of L4. Then we will get

X = x̃1ẽ1 + x̃2ẽ2 + x̃3ẽ3 + x̃4ẽ4 ,
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where

x̃3 =
(
∑

k εkαkxk)√
<α,α>

,

x̃4 =
(
∑

k εkβkxk)√
<β,β>

.

Therefore

φ̃3 =
∑

k εkαkφk√
<α,α>

,

φ̃4 =
∑

k εkβkφk√
<β,β>

.

Consequently,

φ̃3 + iφ̃4 =
{
∑
k εk(αk + iβk)φk}√

< α,α >
≡ 0 ,

which implies x̃3 + ix̃4 is analytic. Note that neither φ̃3 nor φ̃4 is

identically zero, and, in turn, implies x̃3+ix̃4 is not constant. φ̃1
2

= φ̃2
2
,

since
∑
k εkφk

2 ≡
∑
k εkφ̃k

2
≡ 0. This implies φ̃1 ≡ φ̃2 or φ̃1 ≡ −φ̃2,

where φ̃1 is not identically zero. Otherwise S is 3-degenerate. Hence
(x̃1, x̃2) defines a non-constant lightlike line in L2 and (x̃3, x̃4) defines a
nonconstant analytic curve in R2 under the suitable orthogonal complex
structure.

Case 2. A is lightlike.
Then both α and β are lightlike, and therefore they are linearly

dependent. Therefore A can be considered as a real lightlike vector.
By Proposition 2.6 [6], Ŝ lies in the null hyperplane z1 = z2 under a
suitable orthogonal coordinate change in L4. Hence φ1 = φ2, φ1 6= 0,
and φ3

2 + φ4
2 = 0. Therefore (x1, x2) defines a lightlike line in L2 and

(x3, x4) defines a nonconstant holomorphic or anti-holomorphic map
with respect to an orthonormal complex structure.

The converse is trivial since the hypothesis imply φ1
2 ≡ φ2

2, φ3
2 +

φ4
2 ≡ 0 and φ1 6= 0, φ3 6= 0. Since it does not lie in a plane, φ1 ≡ cφ3

for no c ∈ C and therefore S should be 2-generate.
(3) S is 3-degenerate if and only if Ŝ is constant in Q2

+ ⊂ CP 3
+. In fact,

only the first kind of degeneration is possible, since Ŝ is in Q2
+. In turn,

Ŝ is constant if and only if S has the same tangent space everywhere,
which is equivalent to the statement that S lies on a plane in L4.

�

Theorem 2.2. Let M be a Riemann surface, F a non-constant meromorphic
function on M , h a (non-constant) harmornic function on M , and c a complex
constant. Suppose they satisfy the following:

(1) |c| < 1;
(2) the analytic differential ω defined on M in terms of a local parameter

z = ξ1 + iξ2 by
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ω =

(
∂h

∂ξ1
− i ∂h

∂ξ2

)
(2)

has zeros coinciding in position and order with zeros and poles of F ;
(3) if c is not real, then h has single-valued harmonic conjugate on M ;
(4) if we denote

d = c2 − 1 (3)

then for every closed curve C on M ,∫
C

d

F
ω = −

∫
C

Fω. (4)

Then the surface X : M −→ L4 defined by

X = Re

∫ (
−c, 1, 1

2
(
d

F
+ F ),

i

2
(
d

F
− F )

)
ω (5)

is a 1-degenerate maximal surface of the first kind. Here the integral
is taken from a fixed point to a variable point M along an arbitrary path.

Conversely, to a 1-degenerate maximal surface S of the first kind in
L4, we may assign a quadruple {M,F, h, c} which satisfies the hypothe-
ses. The surface S is given, up to congruence, by (5).

Proof. Suppose a quadruple {M,F, h, c} satisfies the hypotheses i) - iv). Then
for the holomophic 1-form ω, Re

∫
C
ω = 0 for any closed smooth curve in M .

iv) guarantees Re
∫

1
2 ( dF + F )ω = Re

∫
i
2 ( dF − F )ω = 0 for any closed curve in

M . Hence (5) gives us a well-defined map X : M → L4. Since M is locally

simply-connected, xk is a real part a holomorphic map, ∂xk

∂ξ1 − i
∂xk

∂ξ2 = φk is also

holomorphic and φk is the ontegrand in (5). Directly from (5),

−φ12 + φ2
2 + φ3

2 + φ4
2 = (1− c2 + d)φ2

2 = 0 ,

and
4∑
k=1

εk|φk|2 > 0 .

Hence (5) defines a maximal surface in L4. Since φ1 = −cφ2, S is degenerate.
We have to show S is exactly 1-degenerate of the first kind. Suppose

∑
εkakφk ≡

0, where φ1 = −cφ2, φ3
2 + φ4

2 = dφ2
2, d = c2 − 1, and |c| < 1. Here φ2 is not

identically zero since h is nonconstant.
∑
εkakφk ≡ 0 means that

2(a1c+ a2)F + d(a3 + ia4) + F 2(a3 − ia4) ≡ 0 .

If a3 − ia4 6= 0, then F ≡ constant, a contradiction. Hence a3 = ia4. Also
a1 + a2 = 0, i.e. a2 = −a1c. Consequently,

∑
εkakφk = 0 implies

−a1φ1 − a1cφ2 + a3φ3 + a4φ4 = −a1(φ1 + cφ2) + a4(iφ3 + φ4)
= a4(iφ3 + φ4) = 0 .
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If a4 6= 0, then iφ3 + φ4 = 0 which implies d = c2 − 1 = 0, a contradiction
to the fact that c 6= ±1. Hence a3 = a4 = 0. The vector (a1,−ca1, 0, 0) is
clearly timelike since |c| < 1 and therefore there is only one timelike vector (up
to complex multiple) which satisfies the linear equation

∑
εkakφk ≡ 0.

Suppose S is a 1-degenerate maximal surface of the first kind. Then there is
an orthonormal basis of L4 with respect to which the Gauss map of S satisfies

φ1 = cφ2,

φ3
2 +φ4

2 = dφ2,
d = c2 − 1

with respect to a local isothermal parameter z = ξ1 + iξ2 on S. Since S does
not lie in a plane in L4, φ1 is not identically zero. Thus the function F =
φ3+iφ4

φ2
is meromorphic in S. F cannot be identically zero. For it would imply

φ3
2 + φ4

2 ≡ 0 , −φ12 + φ2
2 ≡ 0, and also imply that S cannot be 1-degenerate,

which is contrary to the assumption. Similarly c 6= ±1, since c = ±1 implies
φ1 = ±φ2 and φ3

2 +φ4
2 ≡ 0. From φ3

2 +φ4
2 = (φ3 + iφ4)(φ3− iφ4) = dφ2, we

have φ3 − iφ4 = d
F φ2, and φ3 + iφ4 = Fφ2. Hence we find

φ3 = 1
2

(
d
F + F

)
φ2 ,

φ4 = i
2

(
d
F − F

)
φ2 .

Now the Gauss map takes the form

Φ = φ

(
−c, 1, 1

2
(
d

F
+ F ),

i

2
(
d

F
− F )

)
.

If F were constant, the Gauss map would be constant, but that is not the case.
Put h = x2. Then ω = φ2dz, and (5) follows from the fact that X = Re

∫
Φdz.

Since X is single-valued on S, for any closed curve in S,

Re

∫
1

2
(
d

F
+ F )ω = Re

∫
i

2
(
d

F
− F )ω = 0 ,

from which we can get ∫
d

F
ω = −

∫
Fω .

Similarly, Re
∫
ω = Re

∫
−cω = 0 implies

∫
φ2dz = 0 for any closed curve in

S if c is not real. It follows that the harmonic conjugate of h, say∫
∂h

∂ξ1
dξ1 − ∂h

∂ξ2
dξ2

is single-valued in S. �

Theorem 2.3. (1) Let M be a Riemann surface, F a non-constant mero-
morphic function on M , h a (non-constant) harmornic function on M ,
and c a complex constant. Suppose they satisfy the following:
(a) |c| < 1, c 6= ±i;
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(b) the analytic differential ω defined on M in terms of a local param-
eter z = ξ1 + iξ2 by

ω =

(
∂h

∂ξ1
− i ∂h

∂ξ2

)
dz (6)

has zeros coinciding in position and order with zeros and poles of
F ;

(c) if c is not real, then h has single-valued harmonic conjugate on M ;
(d) if

d = c2 + 1, (7)

then

Re

∫
C

Fω = Re

∫
C

d

F
ω = 0 (8)

for every closed curve C on M ,
Then the surface X : M −→ L4 defined by

X = Re

∫ (
1

2
(F − d

F
),

1

2
(F +

d

F
), 1, c

)
ω (9)

is a 1-degenerate maximal surface of the second kind and its Gaussian
image lies in a hyperplane which is SO(1,3)-equivalent to cz3 − z4 = 0,
|c| ≤ 1, c 6= ±i. Here the integral is taken from a fixed point to a
variable point M along an arbitrary path.

Conversely, let S be a 1-degenerate maximal surface of the second
kind which lies in a hyperplane that is SO(1,3)-equivalent to cz3−z4 = 0,
|c| ≤ 1, c 6= ±i. To such an S, we may assign a quadruple {M,F, h, c}
which satisfies the hypotheses. The surface S is actually given, up to
congruence, by (9).

(2) Let M be a Riemann surface, F a non-constant meromorphic function
on M , h a (non-constant) harmornic function on M , and c a complex
constant. Suppose they satisfy the following:
(a) |c| < 1;
(b) the analytic differential ω defined on M in terms of a local param-

eter z = ξ1 + iξ2 by

ω =

(
∂h

∂ξ1
− i ∂h

∂ξ2

)
dz (10)

has zeros coinciding in position and order with zeros and poles of
F ;

(c) if c is not real, then h has a single-valued harmonic conjugate on
M ;

(d) if
d = −c2 + 1, (11)

then

−
∫
C

Fω =

∫
C

d

F
ω (12)
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for every closed curve C on M .
Then the surface X : M −→ L4 defined by

X = Re

∫ (
1,−c, 1

2
(F +

d

F
),
i

2
(
d

F
− F ),

)
ω (13)

is a 1-degenerate maximal surface of the second kind and its Gaussian
image lies in a hyperplane which is SO(1,3)-equivalent to cz1 + z2 = 0,
|c| < 1. Here the integral is taken from a fixed point to a variable point
M along an arbitrary path.

Conversely, let S be a 1-degenerate maximal surface of the second
kind which lies in a hyperplane that is SO(1,3)-equivalent to cz1 + z2 =
0, |c| < 1. To such an S, we may assign a quadruple {M,F, h, c}
which satisfies the hypotheses. The surface S is actually given, up to
congruence, by (13).

(3) Let M be a Riemann surface, F a non-constant meromorphic function
on M , g and h a (non-constant) harmonic function on M . Suppose
they satisfy the following:
(a) the analytic differential λ defined on M in terms of a local param-

eter z = ξ1 + iξ2 by

λ =

(
∂g

∂ξ1
− i ∂g

∂ξ2

)
dz = ψdz (14)

has zeros coinciding in position and order with zeros of F ;
(b) the analytic differential µ defined on M in terms of a local param-

eter z = ξ1 + iξ2 by

µ =

(
∂h

∂ξ1
− i ∂h

∂ξ2

)
dz = Ψdz (15)

has zeros coinciding in position and order with poles of F ;
(c)

FΨ + ψ
F = −

√
2iΨ ,

|FΨ|2 − 2Re(ψΨ) + |ψF |
2 > 0 ;

(16)

(d) for every closed curve C on M ,∫
C

Fµ = −
∫
C

λ

F
. (17)

Then the surface X : M −→ L4 defined by

X =
1

2
Re

∫
(1,−1, F,−iF )µ+

1

2
Re

∫ (
1, 1,

1

F
,
i

F

)
λ (18)

is a 1-degenerate maximal surface of the second kind and its Gaussian
image lies in a hyperplane which is SO(1,3)-equivalent to −z1 + z2 +√

2z3 = 0. Here the integral is taken from a fixed point to a variable
point M along an arbitrary path.
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Conversely, let S be a 1-degenerate maximal surface of the second
kind which lies in a hyperplane that is SO(1,3)-equivalent to −z1 + z2 +√

2z3 = 0. To such an S, we may assign a quadruple {M,F, g, h}
which satisfies the hypotheses. The surface S is actually given, up to
congruence, by (18).

Proof. (1) Put F = φ1+φ2

φ3
.

(2) Put F = φ3+iφ4

φ1
.

(3) Since g and h are harmonic functions on M , Re
∫
C
λ = Re

∫
C
µ = 0 for

any closed (smooth) curve in M . Also iv) guarantees

Re

∫
C

(
Fµ+

λ

F

)
= Re

∫
C

i

(
−Fµ+

λ

F

)
= 0 .

Hence (18) gives us a well-defined map X : M → L4. Since g =
Re
∫
ψdz, h = Re

∫
Ψdz, we obtain x1 = 1

2 (g + h), and x2 = 1
2 (g − h).

Since M is locally simply-connected and all of the integrands in (18) are

holomorphic on M , all xk’s are harmonic and hence φk = ∂xk

∂ξ1 − i
∂xk

∂ξ2

are holomorphic for 1 ≤ k ≤ 4, and φk is the integrand in (18). Directly
from (18),

− φ1
2 + φ2

2 + φ3
2 + φ4

2

= 1
4{−(ψ + Ψ)2 + (ψ −Ψ)2 + (FΨ + ψ

F )2 − (−FΨ + ψ
F )2}

= 0

and

− |φ1|2 + |φ2|2 + |φ3|2 + |φ4|2

= 1
2

(
|FΨ|2 − (2Re(ψΨ) + |ψF |

2
)
> 0 .

Hence X : M −→ L4 defines a maximal surface in L4. Now we prove
that it is exactly 1-degenerate of the second kind. Suppose

∑
εkakφk ≡

0. Since FΨ + ψ
F = −

√
2iΨ, it follows that ψ = (F 2 −

√
2iF )Ψ except

isolated points. Note that neither Ψ nor ψ is identically zero. Let

α = −a1 − a2 −
√

2ia3 +
√

2a4 ,

β =
√

2ia1 −
√

2ia2 − 2ia4 ,
γ = −a1 + a2 .

Then 0 ≡ 2
∑
εkakφk ≡ αΨ + βFΨ + γF 2Ψ. Since Ψ is not identically

zero, we have the quadratic equation of F with the form α+βF+γF 2 ≡
0, where α, β, γ are defined as above. Since F is not constant, all the
coefficients are zeros, otherwise F would be constant in terms of a1, a2,
a3, a4. Hence we obtain

a1 = a2 = a, a4 = 0, a3 =
i√
2

(a1 + a2) =
√

2ia .
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There is only one, up to a linear factor, spacelike vector (1, 1,
√

2i, 0)
which satisfies the equation (1). Hence S is a 1-degenerate maximal
surface of the second kind.

We will prove the converse. Hypotheses guarantees the existence of
an orthonormal basis of L4 with respect to which the Gauss nap of S
satisfies φ3 = i√

2
(φ2−φ1) with respect to a local isothermal parameter

z = ξ1 + iξ2 on M . If φ2 − φ1 ≡ 0, then φ3 ≡ φ4 ≡ 0. This would
imply that the Gauss map is constant. In the similar way we can show
φ1 + φ2 does not vanish everywhere. Thus the function

F =
φ3 + iφ4
φ1 − φ2

=
φ1 + φ2
φ3 − iφ4

is meromorphic on M . F does not vanish everywhere, otherwise 0 ≡
φ3

2 + φ4
2 ≡ φ1

2 + φ2
2 would imply either φ1 + φ2 ≡ 0 or φ1 − φ2 ≡ 0.

If F is constant, then the Gauss map would be constant, that is, S
could not be 1-degenerate. Consider the map X : M −→ L4 defines a
maximal surface S. Define g = x1+x2, h = x1−x2 so that both become
harmonic maps on M . Note that neither of them is constant, because
none of φ1 − φ2 and φ1 + φ2 vanish everywhere. Define ψ = ∂g

∂ξ1 − i
∂g
∂ξ2

and Ψ = ∂h
∂ξ1 − i

∂h
∂ξ2 . Then

ψ = φ1 + φ2 , Ψ = φ1 − φ2 . (19)

According to the definition of F ,

φ3 + iφ4 = FΨ , φ3 − iφ4 =
ψ

F
. (20)

Note here FΨ and ψ
F are holomorphic on M , and therefore the hypothe-

ses (a) and (b) are satisfied. From (19) and (20) we obtain

φ1 = 1
2 (ψ + Ψ),

φ2 = 1
2 (ψ −Ψ),

φ3 = 1
2 (FΨ + ψ

F ),

φ1 = i
2 (ψF − FΨ).

(21)

Direct computation shows (c) is also satisfied. SinceX = Re
∫

Φdz, (18)
follows easily up to the choice of a fixed point and a path to a variable
point from it, in other words, up to a congruence in L4. For any closed

curve C on M , Re
∫
C

(
Fµ+ λ

F

)
≡ 0, that is

∫
C
Fµ +

∫
C
λ
F ≡ 0 and

therefore (d) is satisfied.
�

Theorem 2.4. Let M be a Riemann surface, F a non-constant meromorphic
function on M , h a (non-constant) harmornic function on M . Suppose they
satisfy the following:
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(1) the analytic differential ω defined on M in terms of a local parameter
z = ξ1 + iξ2 by

ω =

(
∂h

∂ξ1
− i ∂h

∂ξ2

)
dz (22)

has zeros coinciding in position and order with zeros and poles of F ;
(2) h has a single-valued harmonic conjugate on M ;
(3) for every closed curve C on M ,∫

C

Fω = 2

∫
C

ω

F
(23)

Then the surface X : M −→ L4 defined by

X = Re

∫ (
i, 1,

1

2
(F − 2

F
),− i

2
(F +

2

F
)

)
ω (24)

is a 1-degenerate maximal surface of the third kind. Here the integral is taken
from a fixed point to a variable point M along an arbitrary path.

Conversely, to a 1-degenerate maximal surface S of the third kind in L4, we
may assign a triple {M,F, h} which satisfies the hypotheses. The surface S is
actually given, up to congruence, by (24).

Proof. Put F = φ3+iφ4

φ2
and x2 = h. �
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