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FIXED POINTS AND COMMON FIXED POINTS THEOREMS

IN CONE METRC-LIKE SPACES

Seung Hyun Kim and Mee Kwang Kang∗

Abstract. In this paper, we introduce the new concept of a cone metric-

like space and consider some fixed point theorems for generalized contrac-

tive mappings under suitable conditions in cone metric-like spaces. Our
results generalize and unify the several main results of [1, 2, 9].

1. Introduction and Preliminaries

In 2007, Huang and Zhang [3] introduced a cone metric, as a generalization of
a usual metric, and obtained fixed point theorems for some contractive mappings
in cone metric spaces. Since then the fixed point theory for various mappings
in a cone metric space has been rapidly developed and a lot of papers have
appeared (see e.g., [4, 5, 6]). Later, Amini-Harandi [1] introduced a metric-like
space, as a generalization of partial metric spaces, and considered some fixed
point theorems for contractive mappings in metric-like spaces.

In 2002, Aamri and Moutawakil [7] introduced a property (E,A) for self
mappings and obtained some fixed point theorems for such mappings under
strict contractive conditions. Since the class of mappings satisfying property
(E,A) contains the class of noncompatible mappings, the property (E,A) is
very useful in the study of fixed point theorems of nonexpansive mappings(see
[8]). Kim and Lee [2] introduced the property (C), which is a cone metric
version of the usual metric property (E,A).

Inspired by the previous works, in this paper we introduce the concept of
a cone metric-like, as a generalization of both cone metric and metric-like,
and consider fixed point theorems for generalized contractive mappings in cone
metric-like spaces. Our results generalize and unify the several main theorems
of [1, 2, 9].

First of all, we recall some basic notions of a cone and a partial ordering.
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A nonempty subset P of a real Banach space E is called a cone if and only if
(P1) P is closed, P 6= {0};
(P2) a, b ∈ R with a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;
(P3) x ∈ P and −x ∈ P ⇒ x = 0.

For a given cone P ⊂ E, we define a partial ordering ‘�’ with respect to P
as follows; for x, y ∈ E, x � y if and only if y − x ∈ P . We shall note x� y if
and only if y − x ∈ intP , where intP denotes the interior of P .

Now, we give the concept of a cone mteric-like space.

Definition 1. Let M be a nonempty set. Suppose that a mapping d : M×M →
(E,P ) satisfies the following;
(d1) d(x, y) = 0 implies that x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈M ;
(d3) d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈M .
Then d is called a cone metric-like on M , and the set M with a cone metric-like
d is called a cone metric-like space, denoted by (M,d).

If E = R and P = R≥0 := {x|x ≥ 0}, then a cone metric-like space (M,d) is
a metric-like space in [1]. Therefore, every metric-like space can be regarded as
a cone metric-like space.

Example 1.1. Let M = [0, 1], E = R2 be a Banach space with the standard
norm, P = {(x, y) ∈ E;x, y ≥ 0} be a cone and let d : M × M → E be a
mapping of the form

d(x, y) =

{
(0, 0), x = y = 0

(|x− y|, 1), otherwise.

Then the pair (M,d) is a cone metric-like space. However, since d(1, 1) = (0, 1)
and d(1, 1) 6= (0, 0), (M,d) is not a cone metric space.

For the notion of convergence, the following definitions are considered in a
cone metric-like space (M,d).

Definition 2. Let {xn} be a sequence in a cone metric-like space (M,d) and
x ∈ M . If for every c ∈ intP , there is a natural number N such that for all
n > N , d(xn, x) � c, then we say that {xn} converges to x with respect to P
and denote as lim

n→∞
xn = x.

Definition 3. Let {xn} be a sequence in a cone metric-like space (M,d). If
for every c ∈ intP , there is a natural number N such that for all n,m > N ,
d(xn, xm)� c, then we say that {xn} is a Cauchy sequence in (M,d).

Definition 4. If every Cauchy sequence in a cone metric-like space (M,d) is
convergent, then (M,d) is called a complete cone metric-like space.
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2. Fixed Point Theorems in Cone Metric-like Spaces

In this section, we establish fixed point theorems in two kinds of conditions
satisfying the property (C) and the other. Firstly, we introduce the useful
property (C) for checking the relationship of a sequence and its image converging
to the same point.

Definition 5. Let M be a nonempty set with a cone metric-like d : M ×M →
(E,P ). A mapping T : M →M is said to satisfy the property (C) if there is a
sequence {xn} in M such that

lim
n→∞

d(xn, z) = 0 = lim
n→∞

d(Txn, z) for some z ∈M.

Definition 6. Let M be a nonempty set with a cone metric-like d : M ×M →
(E,P ). A mapping T : M → M is said to be (ψ,ϕ)-quasi weak contractive if
for each x, y ∈M ,

ψ(d(Tx, Ty)) � ψ(MT (x, y))− ϕ(MT (x, y)),

where ψ,ϕ : P → P are mappings, provided thatMT (x, y) := max{d(x, y), d(x, Tx),
d(y, Ty), d(x, Ty), d(y, Tx), d(x, x), d(y, y)}.

Theorem 2.1. Let M be a nonempty set with a cone metric-like d : M ×M →
(E,P ) and T : M →M a (ψ,ϕ)-quasi-weak contraction satisfying the property
(C) with non-decreasing map ψ and non-increasing map ϕ satisfying ϕ(t) = 0
if and only if t = 0. Then T has a unique fixed point.

Proof. Let {xn} be a sequence in M satisfying

lim
n→∞

d(xn, z) = 0 = lim
n→∞

d(Txn, z) for some z ∈M.

Then, we have

lim
n→∞

MT (z, xn) = lim
n→∞

max{d(z, xn), d(z, Tz), d(xn, Txn), d(z, Txn), d(xn, T z)

, d(z, z), d(xn, xn)}
≤ lim

n→∞
max{d(z, xn), d(z, Tz), d(xn, z) + d(z, Txn), d(z, Txn),

d(xn, z) + d(z, Tz), d(z, xn) + d(xn, z), d(z, xn) + d(xn, z)}
= d(z, Tz). (1)

Since T is a (ψ,ϕ)-quasi-weak contraction,

ψ(d(Tz, Txn)) � ψ(MT (z, xn))− ϕ(MT (z, xn)). (2)

On the other hand, d(Tz, z) � d(Tz, Txn) + d(Txn, z) = d(Tz, Txn). Since
ψ is non-decreasing, we have

ψ(d(Tz, z)) � ψ(d(Tz, Txn)) for n ∈ N. (3)

Letting n→∞, in the inequality (2) and (3), we obtain

ψ(d(Tz, z)) � lim
n→∞

ψ(d(Tz, Txn)) � lim
n→∞

(ψ(MT (z, xn))− ϕ(MT (z, xn))).
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Since ψ is non-decreasing and ϕ is non-increasing, from (1), we have

ψ(d(Tz, z)) � ψ(d(z, Tz))− ϕ(d(z, Tz))

Thus, ϕ(d(z, Tz)) � 0 and the inequality implies that ϕ(d(z, Tz)) = 0 in a
cone P . By the given property of ϕ, d(Tz, z) = 0. Since d is cone metric-like,
Tz = z, that is z is a fixed point of T .

To prove its uniqueness, suppose that T has two distinct fixed points y and
z in M . Then

MT (y, z) = max{d(y, z), d(y, Ty), d(z, Tz), d(y, Tz), d(z, Ty), d(y, y), d(z, z)}
= max{d(y, z), d(y, y), d(z, z), d(y, z), d(z, y), d(y, y), d(z, z)}
= max{d(y, z), d(y, y), d(z, z)}.

From the inequality d(y, y) � d(y, Ty) + d(y, Ty) = 0, we have d(y, y) =
d(z, z) = 0. Therefore, MT (y, z) = d(y, z). Since T is a (ψ,ϕ)-quasi-weak
contraction, we have

ψ(d(y, z)) = ψ(d(Ty, Tz)) � ψ(MT (y, z))− ϕ(MT (y, z)) = ψ(d(y, z))− ϕ(d(y, z))

Thus ϕ(d(y, z)) � 0 which implies that ϕ(d(y, z)) = 0 and d(y, z) = 0. Since d
is cone metric-like, y = z and thus T has a unique fixed point. �

Example 2.2. Let M = {0, 1, 2}, E = R2 be a Banach space with the standard
norm and P = {(x, y) ∈ E;x, y ≥ 0} be a cone. If we define a mapping
d : M ×M → E as follows;

d(0, 0) = (0, 0), d(1, 1) = (0, 1), d(2, 2) = (2, 1),

d(0, 1) = (1, 1), d(1, 0) = (2, 1), d(0, 2) = (1, 1),

d(2, 0) = (2, 1), d(1, 2) = (3, 1), d(2, 1) = (3, 1).

then d is a cone metric-like on M . Let T : M →M be a mapping defined by

T0 = 0, T1 = 0, T2 = 1.

Then, we can easily see that T satisfies the property (C). If ψ,ϕ : P → P are

the mappings defined by ψ((x, y)) = (x2, y − y2

2 ) and ϕ((x, y)) = (x+y
2 , 0) for

each (x, y) ∈ P , then ψ and ϕ satisfy the condition of Theorem 2.1. Through
the following calculation;

MT (0, 0) = (0, 0), MT (1, 1) = (2, 1), MT (2, 2) = (3, 1),

MT (0, 1) = (2, 1), MT (1, 0) = (2, 1), MT (0, 2) = (3, 1),

MT (2, 0) = (3, 1), MT (1, 2) = (3, 1), MT (2, 1) = (3, 1),

we can induce that T is a (ψ,ϕ)-quasi-weak contraction. Therefore, T has a
unique fixed point.

If (M,d) is a cone metic space and MT (x, y) � d(x, y), then we have the
following theorem as a corollary of Theorem 2.1. And, Theorem 2.1 makes it
possible to omit the continuity of the following theorem.
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Theorem 2.3. [2] Let M be a nonempty set with a cone metric d : M ×M →
(E,P ) and T : M →M a generalized (ψ,ϕ)-weak contractive mapping satisfying
the property (C) and for each x, y ∈M ,

ψ(d(Tx, Ty)) � ψ(d(x, y))− ϕ(d(x, y)),

where ψ,ϕ : P → P are continuous mappings with ϕ(t) = 0 if and only if t = 0.
Then T has a unique fixed point.

Now, we consider a fixed point theorem in complete cone metric-like spaces
without the property (C).

Theorem 2.4. Let (M,d) be a complete cone metric-like space and T : M →M
be a mapping satisfying

d(Tx, Ty) � α(d(x, y))d(x, y)− β(d(x, y))w (4)

for each w ∈ intP , x, y ∈M with x 6= y, where α : P → [0, 1) is non-increasing
and β : P → [0, 1) with β(0) = 0. Then T has a unique fixed point.

Proof. Let x ∈M and xn = Tnx for n ∈ N. Consider

d(xn, xn+1) = d(Txn−1, Txn) � α(d(xn−1, xn))d(xn−1, xn)− β(d(xn−1, xn))w

� d(xn−1, xn) = d(Txn−2, Txn−1)

� α(d(xn−2, xn−1))d(xn−2, xn−1)− β(d(xn−2, xn−1))w

� d(xn−2, xn−1) � · · · � d(x1, x2),

hence {d(xn, xn+1)} is non-increasing. On the other hand, from (4), we have

d(x2, xn+1) = d(Tx1, Txn) � α(d(x1, xn))d(x1, xn)− β(d(x1, xn))w

� α(d(x1, xn)){d(x1, x2) + d(x2, xn+1) + d(xn+1, xn)},

which implies that

(1− α(d(x1, xn))d(x2, xn+1) � d(x1, x2) + d(xn+1, xn) � 2d(x1, x2).

Since {d(xn, xn+1)} is non-increasing, we get

(1− α(d(x1, xn))d(x1, xn) � 4d(x1, x2),

which implies that

d(x1, xn) � 4d(x1, x2)

1− α(d(x1, xn))
.

Since α is non-increasing, we have

d(x1, xn) � 4d(x1, x2)

1− α(t)
(5)

for some t ∈ P . Hence, {xn} is bounded.
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If d(xk, xk+p) � c for k = 1, · · · , n − 1 and c ∈ intP , by the non-increasing
property of α, we have d(xk, xk+p) � α(c)w for w ∈ intP . From (5), we get

d(xn, xn+p) � d(x1, xp)

n−1∏
k=1

α(d(xk, xk+p))

� 4d(x1, x2)

1− α(t)
{α(c)}nwn → 0 as n→∞.

So, there exists N ∈ N, independently of p, such that d(xN , xN+p) � ε for p ∈ N,
which proves that {xn} is a Cauchy sequence, hence we have lim

m,n→∞
d(Tnx, Tmx) =

0. From the completeness of (M,d), there exists x0 ∈M such that

lim
n→∞

d(Tnx, x0) = d(x0, x0) = lim
m,n→∞

d(Tnx, Tmx) = 0. (6)

From (4), we get

d(Tnx, Tx0) � α(d(Tn−1x, x0))d(Tn−1x, x0)− β(d(Tn−1x, x0))w

� α(d(Tn−1x, x0))d(Tn−1x, x0). (7)

By (6) and (7), we have lim
n→∞

d(Tnx, Tx0) = 0. Thus,

lim
n→∞

d(Tnx, Tx0) = d(Tx0, Tx0) = lim
m,n→∞

d(Tnx, Tmx) = 0.

From the inequality (d3) of a cone metric-like d, we have

d(x0, Tx0) � d(Tnx, x0) + d(Tnx, Tx0)→ 0 as n→∞

and so x0 = Tx0, that is x0 is a fixed point of T .
To prove the uniqueness, suppose that T has two distinct fixed points y and

z in M . Then, from (4),

d(y, z) = d(Ty, Tz) � α(d(y, z))d(y, z)− β(d(y, z))w � α(d(y, z))d(y, z),

which implies that

(1− α(d(y, z)))d(y, z) � 0.

Thus, d(y, z) = 0 which implies the unique existence of fixed point of T . �

By putting β ≡ 0, then the following theorem in [1] is a corollary of Theorem
2.4.

Theorem 2.5. Let (M,d) be a complete metric-like space and T : M → M be
a mapping satisfying

d(Tx, Ty) ≤ α(d(x, y))d(x, y)

for each x, y ∈ M with x 6= y with α : [0,∞) → [0, 1) is non-increasing. Then
T has a unique fixed point.
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3. Common Fixed Point Theorems in Cone Metric-like Spaces

Definition 7. Two mappings S, T : M → M are weakly compatible if STx =
TSx whenever Sx = Tx.

Definition 8. Let M be a nonempty set with a cone metric-like d : M ×M →
(E,P ). Two mappings S, T : M → M are said to satisfy the property (C) if
there is a sequence {xn} in M such that

lim
n→∞

d(Sxn, z) = 0 = lim
n→∞

d(Txn, z) for some z ∈M.

Theorem 3.1. Let M be a nonempty set with a cone metric-like d : M ×M →
(E,P ) and S, T : M → M be mappings satisfying the property (C), S be onto,
and for each x, y ∈M ,

ψ(d(Tx, Ty)) � ψ(d(Sx, Sy))− ϕ(d(Sx, Sy))

where ψ is non-decreasing and ϕ is non-increasing self-mappings on P . Then
S and T have a coincidence point in M . Moreover, if S and T are weakly
compatible, then S and T have a unique common fixed point.

Proof. Let {xn} be a sequence in M satisfying

lim
n→∞

d(Sxn, z) = 0 = lim
n→∞

d(Txn, z) for some z ∈M.

Take a ∈M such that z = Sa, then

lim
n→∞

d(Sxn, Sa) = 0 = lim
n→∞

d(Txn, Sa) for some z ∈M.

Since

ψ(d(Ta, Txn)) � ψ(d(Sa, Sxn))− ϕ(d(Sa, Sxn)),

we have

lim
n→∞

ψ(d(Ta, Txn)) � lim
n→∞

(ψ(d(Sa, Sxn))− ϕ((Sa, Sxn))),

which implies that

ψ(d(Ta, Sa)) � ψ(d(Sa, Sa))− ϕ(d(Sa, Sa)).

Thus, d(Ta, Sa) = 0.
Now, we show that z = Ta is a common fixed point of S and T . Since S and

T are weakly compatible, we have

ψ(d(Ta, TTa)) � ψ(d(Sa, STa))− ϕ(d(Sa, STa)) = ψ(d(Ta, TTa))− ϕ(d(Ta, TTa)),

which implies that Ta = TTa. Hence TTa = STa = Ta = z. To prove the
uniqueness, suppose that S and T have two distinct fixed points y = Sy = Ty
and z = Sz = Tz in M , then

ψ(d(Tz, Ty)) � ψ(d(Sz, Sy))− ϕ(d(Sz, Sy)) = ψ(d(Tz, Ty))− ϕ(d(Tz, Ty)).

Hence, ϕ(d(Tz, Ty)) = 0. �
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By putting ψ(t) = t and ϕ(t) = 0 in Theorem 3.1, we have the following
common fixed point theorem.

Theorem 3.2. [2] Let M be a nonempty set with a cone metric d : M ×M →
(E,P ) and S, T : M → M be mappings satisfying the property (C), S be onto,
and for each x, y ∈M ,

d(Tx, Ty) � d(Sx, Sy).

Then S and T have a coincidence point in M . Moreover, if S and T are weakly
compatible, then they have a unique common fixed point.

The following theorem in [9] is a corollary of Theorem 3.1.

Theorem 3.3. Let (X, d) be a cone metric space, and P a normal cone with
normal constant K. Suppose mappings S, T : M →M satisfy

d(Tx, Ty) � kd(Sx, Sy), for all x, y ∈M,

where k ∈ [0, 1) is a constant. If the range of S contains the range of T and
S(M) is a complete subspace of M , then T and S have a unique point of coin-
cidence in M . Moreover, if S and T are weakly compatible, then they have a
unique common fixed point.
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