DOI QR코드

DOI QR Code

Properties of the carbon electrode perovskite solar cells with various annealing processes

열처리 방법에 따른 카본전극 페로브스카이트 태양전지의 특성 변화

  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Kwangbea (Department of Materials Science and Engineering, University of Seoul)
  • 송오성 (서울시립대학교 신소재공학과) ;
  • 김광배 (서울시립대학교 신소재공학과)
  • Received : 2020.11.02
  • Accepted : 2021.02.05
  • Published : 2021.02.28

Abstract

The photovoltaic properties and microstructure changes were observed while perovskite solar cells (PSCs) with a fabricated carbon electrode were formed using the following annealing processes: hot-plate, oven, and rapid thermal annealing (RTA). Perovskite solar cells with a glass/FTO/compact TiO2/meso TiO2/meso ZrO2/carbon structure were prepared. The photovoltaic properties and microstructure changes in the PSCs were analyzed using a solar simulator, optical microscopy, and field emission scanning electron microscopy. An analysis of the photovoltaic properties revealed outstanding properties when RTA was applied to the cells. Microstructure analysis showed that perovskite was formed locally on the carbon electrode surface when hot-plate and oven annealing were applied. On the other hand, PSC with RTA showed a flat surface without extra perovskite agglomeration. Denser perovskite formed on the porous carbon electrode layer with RTA showed superior photovoltaic properties. These results suggest that the RTA process might be appropriate for the massive production of carbon electrode PSCs considering the processing time.

카본 전극 페로브스카이트 태양전지의 광활성층을 형성하는데 열판, 오븐, 쾌속열처리로 방법을 달리하며 이때 광전기적 특성과 미세구조 변화를 확인하였다. Glass/FTO/compact TiO2/meso TiO2/meso ZrO2/perovskite/carbon electrode 구조의 페로브스카이트 태양전지 소자를 열판 공정, 오븐 공정, RTA(rapid thermal annealing) 공정을 이용하여 준비하였다. 이때 광전기적 특성과 미세구조를 solar simulator와 광학현미경, 장발산주사전자현미경을 이용하여 각 소자의 특성을 분석하였다. 광전기적 특성 분석 결과, RTA 공정을 이용하여 제작한 소자에서 가장 우수한 광전기적 특성을 확인할 수 있었다. 미세구조 분석 결과 열판 공정과 오븐 공정으로 제작한 시편은 카본 전극 상부에 과잉 페로브스카이트 상이 형성되고, RTA 공정으로 제작한 시편에서는 시편 상부에 과잉 페로브스카이트 상 없이, 균일한 페로브스카이트가 형성된 것을 확인할 수 있었다. 또한 단면 미세구조에서는 RTA 공정으로 제작한 소자가 다공성 카본 전극 층에 고밀도의 페로브스카이트 층을 형성하여 우수한 광전기적 특성을 나타내었다. 따라서 대면적 소자 제작의 공정시간을 고려한 새로운 열처리방안으로 RTA 방법의 채용 가능성을 확인하였다.

Keywords

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc. Vol.131, No.17, pp. 6050-6051, Apr. 2009. DOI: https://doi.org/10.1021/ja809598r
  2. S. Maniarasu., T. B. Korukonda, V. Manjunath, E. Ramasamy, M. Ramesh, G. Veerappan, "Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization," Renewable and Sustainable Energy Reviews, Vol.82, pp. 845-857, Feb. 2018. DOI: https://doi.org/10.1016/j.rser.2017.09.095
  3. F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, L. Sun, "Structure Engineering of Hole-Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed Commercial Carbon Paste As Cathode," ACS Appl. Mater. Interface, Vol.6, No.18, pp. 16140-16146, Aug. 2014. DOI: https://doi.org/10.1021/am504175x
  4. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, H. Han, "A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability," Science, Vol.345, pp. 295-298, Jul. 2014. DOI: https://doi.org/10.1126/science.1254763
  5. H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, T. Ma, "Hole-conductor-free, Metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode," J. Phys. Chem. Lett. Vol.5, No.18, pp. 3241-3246, Sep. 2014. DOI: https://doi.org/10.1021/jz5017069
  6. S. Hashmi, D. Martineau, M. Dar, T. Myllymaki, T. Sarikka, V. Ulla, S. Zakeeruddin, M. Gratzel, "High performance carbon-based printed perovskite solar cells with humidity assisted thermal treatment," Journal of Materials Chemistry A, Vol.5, pp. 12060-12067, May. 2017. DOI: https://doi.org/10.1039/C7TA04132B
  7. K. Kim, O. Song, "Photoactive Layer Formation with Oven Annealing for a Carbon Electrode Perovskite Solar Cell," Korean Journal of Materials Research, Vol.30, No.11, pp.595-600, Nov. 2020. DOI: https://doi.org/10.3740/MRSK.2020.30.11.595
  8. Q. Yang, M. Liao, Z. Wang, J. Zheng, Y. Iin, X. Guo, Z. Rui, D. Huang, L. Lu, M. Feng, P. Cheng, C. Shou, Y. Zeng, B. Yan, J. Ye, "In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells," Solar Energy Materials and Solar Cells, Vol.210, No.15, pp. 110518-11053, June. 2020 DOI:https://doi.org/10.1016/j.solmat.2020.110518
  9. N. Santhosh, S. Sitaaraman, P. Pounraj, R. Govindaraj, M. Pandian, P, Ramasamy, "Fabrication of hole-transport-free perovskite solar cells using 5-ammonium valeric acid iodide as additive and carbon as counter electrode," Material Letters, Vol.236, No.1, pp. 706-709, Feb. 2019. DOI: https://doi.org/10.1016/j.matlet.2018.11.052
  10. H. Lee, K. Kim, O. Song, "Properties of Perovskite Solar Cells with GO Addition on TiO2 Layer," Korean J. Met. Mater, Vol.57, No.7, pp. 456-461, Dec. 2019. DOI: http://dx.doi.org/10.3365/KJMM.2020.58.1.59