참고문헌
- Acevedo, P., Real, R., and Gortazar, C. (2011). [Favorabilidad ecogeografica para el corzo: distribucion y abundancia]. Pirineos, 166, 9-27. https://doi.org/10.3989/pirineos.2011.166001
- Aini, S., Sood, A.M., and Saaban, S. (2015). Analysing elephant habitat parameters using GIS, remote sensing and analytic hierarchy process in Peninsular Malaysia. Pertanika Journal of Science and Technology, 23, 37-50.
- Al-Abadi, A.M., Al-Temmeme, A.A., and Al-Ghanimy, M.A. (2016). A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra-Al Al-Gharbi-Teeb areas, Iraq. Sustainable Water Resources Management, 2, 265-283. https://doi.org/10.1007/s40899-016-0056-5
- Al-Abadi, A.M., Pourghasemi, H.R., Shahid, S., and Ghalib, H.B. (2017). Spatial mapping of groundwater potential using entropy weighted linear aggregate novel approach and GIS. Arabian Journal for Science and Engineering, 42, 1185-1199. https://doi.org/10.1007/s13369-016-2374-1
- Altafi Dadgar, M., Zeaieanfirouzabadi, P., Dashti, M., and Porhemmat, R. (2017). Extracting of prospective groundwater potential zones using remote sensing data, GIS, and a probabilistic approach in Bojnourd basin, NE of Iran. Arabian Journal of Geosciences, 10, 114. https://doi.org/10.1007/s12517-017-2910-7
- Arabameri, A., Rezaei, K., Cerda, A., Lombardo, L., and RodrigoComino, J. (2019). GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Science of the Total Environment, 658, 160-177. https://doi.org/10.1016/j.scitotenv.2018.12.115
- Arya, S., Subramani, T., and Karunanidhi, D. (2020). Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin, South India. Environmental Earth Sciences, 79, 102. https://doi.org/10.1007/s12665-020-8832-9
- Biswas, S., Mukhopadhyay, B.P., and Bera, A. (2020). Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: a case study from Uttar Dinajpur district, West Bengal. Environmental Earth Sciences, 79, 302. https://doi.org/10.1007/s12665-020-09053-9
- Chen, W., Panahi, M., Khosravi, K., Pourghasemi, H.R., Rezaie, F., and Parvinnezhad, D. (2019). Spatial prediction of groundwater potentiality using ANFIS ensembled with teachinglearning-based and biogeography-based optimization. Journal of Hydrology, 572, 435-448. https://doi.org/10.1016/j.jhydrol.2019.03.013
- Choi, J.K., Oh, H.J., Koo, B.J., Ryu, J.H., and Lee, S. (2011a). Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS. Ecological Modelling, 222, 1522-1533. https://doi.org/10.1016/j.ecolmodel.2010.12.008
- Choi, J.K., Oh, H.J., Koo, B.J., Ryu, J.H., and Lee, S. (2011b). Spatial polychaeta habitat potential mapping using probabilistic models. Estuarine, Coastal and Shelf Science, 93, 98-105. https://doi.org/10.1016/j.ecss.2011.03.006
- Cui, X., Liu, H., Fan, M., Ai, B., Ma, D., and Yang, F. (2021). Seafloor habitat mapping using multibeam bathymetric and backscatter intensity multi-features SVM classification framework. Applied Acoustics, 174, 107728. https://doi.org/10.1016/j.apacoust.2020.107728
- Danilkin, A., and Hewison, A.J.M. (1996). Behavioural Ecology of Siberian and European Roe Deer, London: Chapman and Hall.
- Dodangeh, E., Panahi, M., Rezaie, F., Lee, S., Bui, D.T., Lee, C.W., et al. (2020). Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. Journal of Hydrology, 590, 125423. https://doi.org/10.1016/j.jhydrol.2020.125423
- Duarte, J., Farfan, M.A., and Vargas, J.M. (2010). [Seleccion primaveral de habitat del corzo andaluz (Capreolus capreolus) en un borde de su area de distribucion]. Ecologia, 23, 177-192.
- Evcin, O., Kucuk, O., and Akturk, E. (2019). Habitat suitability model with maximum entropy approach for European roe deer (Capreolus capreolus) in the Black Sea Region. Environmental Monitoring and Assessment, 191, 669. https://doi.org/10.1007/s10661-019-7853-x
- Farrell, A., Wang, G., Rush, S.A., Martin, J.A., Belant, J.L., Butler, A.B., et al. (2019). Machine learning of large-scale spatial distributions of wild turkeys with high-dimensional environmental data. Ecology and Evolution, 9, 5938-5949. https://doi.org/10.1002/ece3.5177
- Garzon, M.B., Blazek, R., Neteler, M., De Dios, R.S., Ollero, H.S., and Furlanello, C. (2006). Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecological Modelling, 197, 383-393. https://doi.org/10.1016/j.ecolmodel.2006.03.015
- Imam, E., and Kushwaha, S.P.S. (2013). Habitat suitability modelling for Gaur (Bos gaurus) using multiple logistic regression, remote sensing and GIS. Journal of Applied Animal Research, 41, 189-199. https://doi.org/10.1080/09712119.2012.739089
- Imam, E., and Tesfamichael, G.Y. (2013). Use of remote sensing, GIS and analytical hierarchy process (AHP) in wildlife habitat suitability analysis. Journal of Materials and Environmental Science, 4, 460-467.
- Jaafari, A., Panahi, M., Pham, B.T., Shahabi, H., Bui, D.T., Rezaie, F., et al. (2019). Meta optimization of an adaptive neurofuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. CATENA, 175, 430-445. https://doi.org/10.1016/j.catena.2018.12.033
- Jiang, G., Qi, J., Wang, G., Shi, Q., Darman, Y., Hebblewhite, M., et al. (2015). New hope for the survival of the Amur leopard in China. Scientific Reports, 5, 15475. https://doi.org/10.1038/srep15475
- Kadirhodjaev, A., Rezaie, F., Lee, M.J., and Lee, S. (2020). Landslide susceptibility assessment using an optimized group method of data handling model. ISPRS International Journal of Geo-Information, 9, 566. https://doi.org/10.3390/ijgi9100566
- Kamali Maskooni, E., Naghibi, S.A., Hashemi, H., and Berndtsson, R. (2020). Application of advanced machine learning algorithms to assess groundwater potential using remote sensing-derived data. Remote Sensing, 12, 2742. https://doi.org/10.3390/rs12172742
- Koh, H.S., and Randi, E. (2001). Genetic distinction of roe deer {Capreolus pygargus Pallas) sampled in Korea. Mammalian Biology, 66, 371-375.
- Korea Meteorological Administration (KMA). (2020). Article title. Retrieved December 11, 2020 from https://www.weather. go.kr/weather/main.jsp.
- Kosicki, J.Z. (2020). Generalised Additive Models and Random Forest approach as effective methods for predictive species density and functional species richness. Environmental and Ecological Statistics, 27, 273-292. https://doi.org/10.1007/s10651-020-00445-5
- Kumar, P., and Hati, A.S. (2020). Deep convolutional neural network based on adaptive gradient optimizer for fault detection in SCIM. ISA Transactions. doi:10.1016/2020.10.052.
- Leathwick, J.R., Rowe, D., Richardson, J., Elith, J., and Hastie, T. (2005). Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. Freshwater Biology, 50, 2034-2052. https://doi.org/10.1111/j.1365-2427.2005.01448.x
- Lee, S., and Talib, J.A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47, 982-990. https://doi.org/10.1007/s00254-005-1228-z
- Lee, S., Lee, S., Song, W., and Lee, M.J. (2017). Habitat potential mapping of marten (Martes flavigula) and leopard cat (Prionailurus bengalensis) in South Korea using artificial neural network machine learning. Applied Sciences, 7, 912. https://doi.org/10.3390/app7090912
- Lee, S., Park, I., Koo, B.J., Ryu, J.H., Choi, J.K., and Woo, H.J. (2013). Macrobenthos habitat potential mapping using GISbased artificial neural network models. Marine Pollution Bulletin, 67, 177-186. https://doi.org/10.1016/j.marpolbul.2012.10.023
- Lee, S., Syifa, M., Koo, B.J., Lee, C.W., and Oh, H.J. (2019). Spatial macrobenthos habitat on Ganghwa tidal flat, Korea: Part II- habitat potential mapping of Potamocorbula laevis using probability models. Journal of Coastal Research, 90(SI), 401-408. https://doi.org/10.2112/SI90-051.1
- Lee, Y.S., Markov, N., Argunov, A., Voloshina, I., Bayarlkhagva, D., Kim, B.J., et al. (2016). Genetic diversity and phylogeography of Siberian roe deer, Caproulus pygargus, in central and peripheral populations. Ecology and Evolution, 6, 7286-7297. https://doi.org/10.1002/ece3.2458
- Lee, Y.S., Markov, N., Voloshina, I., Argunov, A., Bayarlkhagva, D., Oh, J.G., et al. (2015). Genetic diversity and genetic structure of the Siberian roe deer (Capreolus pygargus) populations from Asia. BMC Genetics, 16, 100.
- Loro, M., Ortega, E., Arce, R.M., and Geneletti, D. (2016). Assessing landscape resistance to roe deer dispersal using fuzzy set theory and multicriteria analysis: a case study in Central Spain. Landscape and Ecological Engineering, 12, 41-60. https://doi.org/10.1007/s11355-015-0275-1
- Lovari, S., Masseti, M., and Lorenzini, R. (2016). Capreolus pygargus. Retrieved December 14, 2020 from https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T42396A22161884.en.
- Lopez-Martin, J.M., Martinez-Martinez, D., and Such, A. (2009). Supervivencia, dispersion y seleccion de recursos de corzos Capreolus capreolus (Linnaeus, 1758) reintroducidos en un habitat mediterraneo. Galemys, 21, 143-164.
- Mesfin, Y., and Berhan, G. (2016). Geospatial approach for Grevy's zebra suitable habitat analysis, Allidegi wildlife reserve, Ethiopia. International Journal of Applied Remote Sensing and GIS, 3, 34-42.
- Ng, W.T., Candido de Oliveira Silva, A., Rima, P., Atzberger, C., and Immitzer, M. (2018). Ensemble approach for potential habitat mapping of invasive Prosopis spp. in Turkana, Kenya. Ecology and Evolution, 8, 11921-11931. https://doi.org/10.1002/ece3.4649
- Nguyen, P.T., Ha, D.H., Avand, M., Jaafari, A., Nguyen, H.D., AlAnsari, N., et al. (2020). Soft computing ensemble models based on logistic regression for groundwater potential mapping. Applied Sciences, 10, 2469. https://doi.org/10.3390/app10072469
- Oh, H.J., Syifa, M., Lee, C.W., and Lee, S. (2019). Ruditapes philippinarum habitat mapping potential using SVM and Naive Bayes. Journal of Coastal Research, 90(sp1), 41-48. https://doi.org/10.2112/SI90-006.1
- Panahi, M., Gayen, A., Pourghasemi, H.R., Rezaie, F., and Lee, S. (2020a). Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Science of the Total Environment, 741, 139937. https://doi.org/10.1016/j.scitotenv.2020.139937
- Panahi, M., Sadhasivam, N., Pourghasemi, H.R., Rezaie, F., and Lee, S. (2020b). Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). Journal of Hydrology, 588, 125033. https://doi.org/10.1016/j.jhydrol.2020.125033
- Park, J., Kim, D.S., Song, K.H., Jeong, T.J., and Park, S.J. (2018). Mapping potential habitats for the management of exportable insects in South Korea. Journal of Asia-Pacific Biodiversity, 11, 11-20.
- Park, Y.S., Kim, B.J., Lee, W.S., Kim, J.T., Kim, T.W., and Oh, H.S. (2014). Molecular phylogenetic status of Siberian roe deer (Capreolus pygargus) based on mitochondrial cytochrome b from Jeju Island in Korea. Chinese Science Bulletin, 59, 4283-4288. https://doi.org/10.1007/s11434-014-0535-8
- Pays, O., Fortin, D., Gassani, J., and Duchesne, J. (2012). Group dynamics and landscape features constrain the exploration of herds in fusion-fission societies: the case of European roe deer. PloS One, 7, e34678. https://doi.org/10.1371/journal.pone.0034678
- Pereira, J.M.C., and Itami, R.M. (1991). GIs-based habitat modeling using logistic multiple regression: a study of the Mt. Graham red squirrel. Photogrammetric Engneering and Remote Sensing, 57, 1475-1486.
- Pradhan, A., Kim, Y.T., Shrestha, S., Huynh, T.C., and Nguyen, B.P. (2020). Application of deep neural network to capture groundwater potential zone in mountainous terrain, Nepal Himalaya. Environmental Science and Pollution Research International. doi:10.1007/11356-020-10646-x.
- Rahimian Boogar, A., Salehi, H., Pourghasemi, H.R., and Blaschke, T. (2019). Predicting habitat suitability and conserving Juniperus spp. habitat using SVM and maximum entropy machine learning techniques. Water, 11, 2049. https://doi.org/10.3390/w11102049
- Razavi Termeh, S.V., Kornejady, A., Pourghasemi, H.R., and Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438-451. https://doi.org/10.1016/j.scitotenv.2017.09.262
- Reimoser, S., Partl, E., Reimoser, F., and Vospernik, S. (2009). Roe-deer habitat suitability and predisposition of forest to browsing damage in its dependence on forest growth- model sensitivity in an alpine forest region. Ecological Modelling, 220, 2231-2243. https://doi.org/10.1016/j.ecolmodel.2009.05.022
- Robert, K., Jones, D.O.B., Roberts, J.M., and Huvenne, V.A.I. (2016). Improving predictive mapping of deep-water habitats: considering multiple model outputs and ensemble techniques. Deep Sea Research Part I: Oceanographic Research Papers, 113, 80-89. https://doi.org/10.1016/j.dsr.2016.04.008
- Rosell, C., Carretero, M.A., Cahill, S., and Pasquina, A. (1996). Seguimiento de una reintroduccion de corzo (Capreolus capreolus) en ambiente mediterraneo. Dispersion y area de campeo. Donana Acta Vertebrata, 23, 109-122.
- Sanare, J.E., Ganawa, E.S., and Abdelrahim, A.M.S. (2015). Wildlife habitat suitability analysis at Serengeti National Park (SNP), Tanzania case study Loxodonta sp. Journal of Ecosystem and Ecography, 5, 164.
- Sanchez, P., Demestre, M., Recasens, L., Maynou, F., and Martin, P. (2008). Combining GIS and GAMs to identify potential habitats of squid Loligo vulgaris in the Northwestern Mediterranean. In V.D., Valavanis (Eds.), Essential Fish Habitat Mapping in the Mediterranean (pp. 91-98). Dordrecht: Springer.
- Schmiing, M., Afonso, P., Tempera, F., and Santos, R.S. (2013). Predictive habitat modelling of reef fishes with contrasting trophic ecologies. Marine Ecology Progress Series, 474, 201-216. https://doi.org/10.3354/meps10099
- Shi, Y., Song, X., and Song, G. (2021). Productivity prediction of a multilateral-well geothermal system based on a long short-term memory and multi-layer perceptron combinational neural network. Applied Energy, 282, 116046. https://doi.org/10.1016/j.apenergy.2020.116046
- Sokolov, V.E., Danilkin, A.A., and Dulamtseren, S. (1982). Contemporary distribution and populations of the forest ungulates in Mongolia. Zoological Studies in the People's Republic of Mongolia, 8, 37-56.
- Supreetha, B.S., Shenoy, N., and Nayak, P. (2020). Lion algorithm-optimized long short-term memory network for groundwater level forecasting in Udupi District, India. Applied Computational Intelligence and Soft Computing, 2020, 8685724.
- Tang, J., Su, Q., Su, B., Fong, S., Cao, W., and Gong, X. (2020). Parallel ensemble learning of convolutional neural networks and local binary patterns for face recognition. Computer Methods and Programs in Biomedicine, 197, 105622. https://doi.org/10.1016/j.cmpb.2020.105622
- Tekerek, A. (2021). A novel architecture for web-based attack detection using convolutional neural network. Computers and Security, 100, 102096. https://doi.org/10.1016/j.cose.2020.102096
- Tin, T.C., Chiew, K.L., Phang, S.C., Sze, S.N., and Tan, P.S. (2019). Incoming Work-In-Progress prediction in semiconductor fabrication foundry using long short-term memory. Computational Intelligence and Neuroscience, 2019, 8729367. https://doi.org/10.1155/2019/8729367
- Vu, M.T., Jardani, A., Massei, N., and Fournier, M. (2020). Reconstruction of missing groundwater level data by using Long Short-Term Memory (LSTM) deep neural network. Journal of Hydrology. doi:10.1016/2020.125776.
- Wei, C.C. (2020). Development of stacked long short-term memory neural networks with numerical solutions for wind velocity predictions. Advances in Meteorology, 2020, 5462040.
- Yang, H., Pan, Z., and Tao, Q. (2017). Robust and adaptive online time series prediction with long short-term memory. Computational Intelligence and Neuroscience, 2017, 9478952.
- Zare, S., and Ayati, M. (2020). Simultaneous fault diagnosis of wind turbine using multichannel convolutional neural networks. ISA transactions. doi:10.1016/2020.08.021.
- Zhang, G., Zhu, A.X., He, Y.C., Huang, Z.P., Ren, G.P., and Xiao, W. (2020a). Integrating multi-source data for wildlife habitat mapping: a case study of the black-and-white snub-nosed monkey (Rhinopithecus bieti) in Yunnan, China. Ecological Indicators, 118, 106735. https://doi.org/10.1016/j.ecolind.2020.106735
- Zhang, Q., Zhang, M., Chen, T., Sun, Z., Ma, Y., and Yu, B. (2019). Recent advances in convolutional neural network acceleration. Neurocomputing, 323, 37-51. https://doi.org/10.1016/j.neucom.2018.09.038
- Zhang, X., Wu, F., and Li, Z. (2020b). Application of convolutional neural network to traditional data. Expert Systems with Applications. doi:10.1016/2020.114185.