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ON ALMOST SURE CONVERGENCE OF NEGATIVELY
SUPERADDITIVE DEPENDENT FOR SEMI-GAUSSIAN

RANDOM VARIABLES†

JONG-IL BAEK∗, HYE-YOUNG SEO

Abstract. When {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of rowwise nega-
tively superadditive dependent(NSD) for semi-Gaussian random variables
and {ani|1 ≤ i ≤ n, n ≥ 1} is an array of constants, we study the almost
sure convergence of weighted sums

∑n
i=1 aniXni under some appropriate

conditions and we obtain some corollaries.
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1. Introduction

Hsu and Robbins[9] introduced the concept of complete convergence of a
sequence {Xn} of random variables as follows. A sequence {Xn} of random
variables is said to converge completely to a constant c if

∞∑
n=1

P (|Xn − c| > ϵ) <∞, for every ϵ > 0

If Xn → c completely, then the Borel-caltelli Lemma implies that Xn → c al-
most sure, but the inverse is not true in general. Moreover, it was proved that
the sequence of arithmetic means of independent identically distributed(i.i.d.)
random variables converges completely to the expected value if the variance of
the summands is finite by Hsu and Robbins. This result has been generalized
and extended in several directions and carefully studied by many authors (see,
Chow[4]; Ouy[13]; Taylor and Tien[14]; Gut[8]; Bozorgnia et al[3]; Ghosal and
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Chandra[7]; Hu et al[11]; Ahmed et al[1]; Wang et al[16,17]). Almost sure con-
vergence for a sequence of random variables plays a central role in the area of
limit theorems in probability theory and mathematical statistics. Conditions of
independence and identical distribution of random variables are basic in historic
results due to Bernoulli, Borel or Kolmogorov. Since then, serious attempts have
been made to relax these strong conditions. For example, independence has been
relaxed to pairwise independence or pairwise negative quadrant dependence or,
even replaced by conditions of dependence such as mixing or martingale. In
particular, many authors showed that many results could be obtained by replac-
ing i.i.d. condition by uniformly bounded condition. We call that an array of
random variables {Xni|1 ≤ i ≤ n, n ≥ 1} is said to be uniformly bounded by a
random variable X if for all n and x ≥ 0,

P (|Xni| > x) = O(1)P (|X| > x).

Hu[10] was introduced the concept of NSD random variables which is based on
the class of superadditive functions.

Definition 1.1. ([10]) A random vector (X1, X2, · · · , Xn) is said to be NSD if

Eϕ(X1, X2, ..., Xn) ≤ Eϕ(X∗
1 , X

∗
2 , ..., X

∗
n)

where X∗
1 , X

∗
2 , · · · , X∗

n are independent such that X∗
i and Xi have the same dis-

tribution for each i and ϕ is a superadditive function such that the expectations
in the above equation exist.

Definition 1.2. ([10]) A sequence {Xn : n ≥ 1} of random variables is said to
be NSD if for all n ≥ 1, (X1, X2, ..., Xn) is NSD.

An array {Xni|n ≥ 1, i ≥ 1} of random variables is said to be NSD if for an
n ≥ 1, (X1, X2, · · · , Xn) is said to be NSD

Since the assumption of NSD for a sequence of random variables is much
weaker than an independence, negative association, or negative dependence, a
study on a limiting behavior of NSD sequences is of interest.

The concept of NSD random variables was first introduced by Hu and also
gave an example illustrating that NSD does not imply NA, and posed an open
problem whether NA implies NSD, but Christofides and Vaggelatou[5] was
introduced the NA implies NSD and so it is weaker than NA and it’s structure
is an extension of NA, and sometimes more useful than NA (see Joag-Dev and
Proschan[12 ])

Moreover, the notion of random variables has wide applications in multivariate
statistical analysis and reliability theory and is very important for probability
inequality(See, Block et al [2], Eghbal et al[6], Shen et al[15], Wang et al[16,
17]). Hence it is of important significance to extend the limit properties of the
case of random variables.

The main purpose of this paper is to provide the almost sure convergence re-
sults for weighted sums of arrays of rowwise NSD with semi-Gaussian random
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variables though exponential bounds of semi-Gaussian type under some condi-
tions. The outline of this paper is as follows. We give a definition and some
lemmas in section 2 for section 3 and the main results and some corollaries will
be provided in section 3.

2. Preliminaries

To prove the main results, we need to introduce a definition and present some
lemmas. The statement of the first definition we could found in Chow[4].

Definition 2.1. ([4]) A random variable X with EX = 0 is said to be semi-
Gaussian, if there exists α ≥ 0 such that for every real number t,

EetX ≤ eα
2t2/2. (1)

The minimum of those α satisfying (1) is denoted by τ(X). See([4])

Lemma 2.2. ([10]) Let (X1, X2, X3, · · · , Xn) be an NSD random vector and
f1, f2, · · · , fn are non-decreasing functions, then f1(X1), f2(X2), · · · , fn(Xn) are
NSD.

Lemma 2.3. Let (X1, X2, X3, · · · , Xn) be an NSD random vector with τ(Xi) ≤
αi and

∑n
i=1 α

2
i = α2 . Then for each n ≥ 1 and t > 0,

Ee
∑

tXi ≤
n∏

i=1

EetXi ≤ eα
2t2/2.

Proof. By Definition 1.1,and Lemma 2.2, we can obtain a result of Lemma 2.3.
�

Lemma 2.4. Suppose that {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of rowwise NSD
for semi-Gausian random variables and let P (|Xni| > x) = O(1)P (|X| > x) with
τ(X) ≤ α for 1 ≤ i ≤ n, n ≥ 1. Then for each ϵ > 0, P (|

∑n
i=1Xni| > ϵ) ≤

O(1)e−ϵ2/2nα2 .

Proof. By Lemma 2.3,

P (|
n∑

i=1

Xni| > ϵ) ≤ e−ϵtEet|
∑n

i=1 Xni|

≤ e−ϵt(

n∏
i=1

EetXni) + e−ϵt(

n∏
i=1

Ee−tXni)

= O(1)e−ϵt(

n∏
i=1

EetX) + e−ϵt(

n∏
i=1

Ee−tX)

≤ O(1)e−ϵ2/2nα2

, taking t = ϵ/nα2.

�
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Lemma 2.5. Let {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of rowwise NSD for semi-
Gaussian random variables and let P (|Xni| > x) = O(1)(|X| > x) with τ(X) ≤ α
for all 1 ≤ i ≤ n, n ≥ 1 and x ≥ 0. Assume that {ani|1 ≤ i ≤ n, n ≥ 1} is
an array of constants, and that An =

∑∞
i=1 a

2
ni for each n ≥ 1. Then for every

ϵ > 0 ,

P (|
∞∑
i=1

aniXni| > ϵ) ≤ O(1)e
− ϵ2

2α2An

Proof. By Definition 2.1, Lemma 2.2, 2.3 and t ∈ R,

E(et
∑n

i=1 aniXni) ≤ O(1)E(

n∏
i=1

etaniX)

≤ O(1)et
2α2 ∑n

i=1 a2
ni/2.

Hence, by Fatou’s Lemma,
E(et

∑∞
i=1 aniXni) ≤ O(1)et

2α2An/2

Therefore,

P (|
∞∑
i=1

aniXni| > ϵ)

≤ e−ϵtE(et
∑∞

i=1 aniXni) + e−ϵtEe−t
∑∞

i=1 aniXni

≤ O(1)e
− ϵ2

2α2An , taking t = ϵ/α2An.

�

3. Main Results

With the Definition 2.1, Lemma 2.3 and 2.4, we could now present our first
result.

Theorem 3.1. Let {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of rowwise NSD for
semi-Gaussian random variables and let P (|Xni| > x) = O(1)P (|X| > x) with
τ(X) ≤ α for all 1 ≤ i ≤ n, n ≥ 1 and x ≥ 0. If for every n, and p > 0,

1
n1/p

∑m
i=1 aniXni converges in probability as m → ∞, then 1

n1/p

∑m
i=1 aniXni

converges almost surely as.
Proof. If

∑m
i=1 aniXni → kn in probability for every n, then there exists a subse-

quence {mk|k ≥ 1} such that
∑mk

i=1 aniXni → kn almost surely. Next, we define
that

1

n1/p
Tnk =

1

n1/p
max

mk<m≤mk+1

|
m∑
i=1

aniXni −
mk∑
i=1

aniXni|.

Then, p > 0 and by Lemma 2.5,
P (Tnk > n1/pϵ)
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= P ( max
mk<m≤mk+1

|
m∑
i=1

aniXni −
mk∑
i=1

aniXni| > n1/pϵ)

≤ e−n1/pϵtEe
∑mk+1

i=mk+1 |aniXni|t

≤ e−n1/pϵt

mk+1∏
i=mk+1

Ee(aniXni)t + e−n1/pϵt

mk+1∏
i=mk+1

Ee−(aniXni)t

≤ O(1)e
− n2/pϵ2

2α2 ∑∞
i=mk+1

a2
ni , taking t =

n1/pϵ

α2
∑∞

i=1 a
2
ni

= O(1)e
−n2/pϵ2

2α2An <∞, taking An =

∞∑
i=1

a2ni <∞.

Therefore,

P (
1

n1/p
Tnk > ϵ, i. o.) = 0

follows from the Borel-Cantelli Lemma. Thus
1

n1/p
|

m∑
i=1

aniXni − kn| =
1

n1/p
|

m∑
i=1

aniXni −
mk∑
i=1

aniXni +

mk∑
i=1

aniXni − kn|

≤ 1

n1/p
max

mk<m≤mk+1

(|
m∑
i=1

aniXni −
mk∑
i=1

aniXni|+ |
mk∑
i=1

aniXni − kn|)

=
1

n1/p
Tnk +

1

n1/p
|
mk∑
i=1

aniXni − kn| → 0 almost surely.

�

Theorem 3.2. Suppose that {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of rowwise
NSD for semi-Gaussian random variables and let P (|Xni| > x) = O(1)P (|X| >
x) with τ(X) ≤ α for 1 ≤ i ≤ n, n ≥ 1 and x ≥ 0. Assume that 0 < ani ≤ An−β

for some 0 < A <∞, i ≤ n and β > 0. If p > −2
2β−1 , then

1

n1/p

n∑
i=1

aniXni → 0 almost surely as n→ ∞.

Proof. For every ϵ > 0, by Lemma 2.5,
∞∑

n=1

P (|
n∑

i=1

aniXni| > n1/pϵ)

≤ O(1)

∞∑
n=1

e
− (n1/pϵ)2

2α2 ∑n
i=1

a2
ni

≤ O(1)

∞∑
n=1

e−
ϵ2n2/p+2β−1

2α2A2 <∞.
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Hence, by Borel-Cantelli Lemma, it follows that

lim
n→∞

P (| 1

n1/p

n∑
i=1

aniXni| > ϵ, i. o.) = 0.

Thus, 1
n1/p

∑n
i=1 aniXni → 0 almost surely as n→ ∞.

�

The next two corollaries follow immediately from Theorem 3.2.

Corollary 3.3. Under the Theorem 3.2, if n−1/p = 1 and ani = n−β for n ≥ 1,
1 ≤ i ≤ n, for some β > 1,

1

nβ

n∑
i=1

Xni → 0 almost surely as n→ ∞.

Proof. For each ϵ > 0,

∞∑
n=1

P (| 1
nβ

n∑
i=1

Xni| > ϵ)

≤ O(1)

∞∑
n=1

e
−n2βϵ2

2nα2

= O(1)

∞∑
n=1

e−
nβ−1ϵ2

2c <∞.

Hence, by Borel-Cantelli Lemma,

1

nβ

n∑
i=1

Xni → 0 almost surely, as n→ ∞.

�

Corollary 3.4. Under the Theorem 3.2, if
∑n

i=1 a
2
ni < Bn−β for some 0 < B <

∞ and β > 0, if 0 < p < 2, then

1

n1/p

n∑
i=1

aniXni → 0 almost surely, as n→ ∞.

Proof. We can obtain the result from Theorem 3.2.
�

The next theorem is an application of Lemma 2.5 and we show that the
property NSD among random variables can be preserved through suitable com-
binations and transformations of random variables.



Convergence of negatively superadditive dependent for semi-Gaussian random variables 151

Theorem 3.5. Suppose that {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of NSD
for semi-Gaussian random variables and let {Yni|1 ≤ i ≤ n, n ≥ 1} be an
array of independent random variables. Let {Xni|1 ≤ i ≤ n, n ≥ 1} and
{Yni|1 ≤ i ≤ n, n ≥ 1} be two array of rowwise independent random vari-
ables. Assume that P (|Xni| > x) = O(1)P (|X| > x) with τ(X) ≤ α for all
1 ≤ i ≤ n, n ≥ 1. If f(x) is a monotone, nonnegative function bounded by β,
then 1

n1/p

∑n
i=1 aniXnif(Yni) converges almost surely, where τ(Xf(Yni)) ≤ αβ.

Proof. If X and Y are NSD for semi-Gaussian random variable and T and
W are independent random variables and independent of X and Y , we can
check that h(X,T ) and g(Y,W ) are NSD for semi-Gaussian random variable
for nondecreasing functions h and g, and thus aniXnif(Yni) is a NSD for semi-
Gaussian random variables. Therefore for each p > 0 and ϵ > 0, by Lemma 2.5,
since

E(etaniXnif(Yni)) = E(E(etaniXnif(Yni)|Yni))

≤ O(1)E(et
2α2β2 ∑∞

i=1 a2
ni)

= O(1)et
2α2β2 ∑∞

i=1 a2
ni

∞∑
n=1

P (|
n∑

i=1

aniXnif(Yni)| > n1/pϵ)

≤
∞∑

n=1

e−n1/pϵtE(et|
∑n

i=1 aniXnif(Yni)|)

= O(1)

∞∑
n=1

e−n1/pϵt(E(et
∑n

i=1 aniXf(Yni)) + E(e−t
∑n

i=1 aniXf(Yni)))

≤ O(1)e−n1/pϵt(

∞∏
i=1

EetaniXf(Yni) +

∞∏
i=1

Ee−taniXf(Yni))

≤ O(1)e
− n2/pϵ2

2α2β2An <∞, taking An =

∞∑
i=1

a2ni <∞

Hence, by Borel-Cantelli Lemma,

1

n1/p

n∑
i=1

aniXnif(Yni) → 0 almost surely as n→ ∞.

�
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