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Abstract. Information systems and decision rules with imprecision and
uncertainty in data analysis are studied in complete residuated lattices. In
this paper, we introduce the notions of distance spaces, Alexandrov pre-
topology (precotopology) and join-meet (meet-join) operators in complete
co-residuated lattices. We investigate their relations and properties. More-
over, we give their examples.
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1. Introduction

Ward et al.[24] introduced a complete residuated lattice which is an important
mathematical tool for many valued logics [1-12,20,21]. Pawlak [16,17] introduced
the rough set theory as a formal tool to deal with imprecision and uncertainty in
the data analysis. For an extension of Pawlak’s rough sets, many researchers[1-
12, 20,21] developed L-lower and L-upper approximation operators in complete
residuated lattices.

Zheng et al.[25] introduced a complete co-residuated lattice as the generaliza-
tion of t-conorm. Junsheng et al.[7] investigated (⊙,&)-generalized fuzzy rough
set on (L,∨,∧,⊙,&, 0, 1) where (L,∨,∧,&, 0, 1) is a complete residuated lattice
and (L,∨,∧,⊙, 0, 1) is complete co-residuated lattice in a sense [13].

An interesting and natural research topic in rough set theory is the study
topological structures. Lai [13] and Ma [14] investigated the Alexandrov L-
topology and lattice structures on L-fuzzy rough sets determined by lower and
upper sets.
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Kim et al. [8-12] studied the properties of fuzzy join and meet completeness,
L-fuzzy upper and lower approximation spaces and Alexandrov L-topologies
with fuzzy partially ordered spaces in complete residuated lattices.

In this paper, we introduce the notions of distance spaces, Alexandrov pre-
topology (precotopology) and join-meet (meet-join) operators in complete co-
residuated lattices. We investigate their relations and properties. Moreover, we
give their examples.

2. Preliminaries

Definition 2.1. [7,26] An algebra (L,∧,∨,⊕, 0, 1) is called a complete co-
residuated lattice if it satisfies the following conditions:

(C1) L = (L,≤,∨,∧, 0, 1) is a complete lattice where 0 is the bottom element
and 1 is the top element.

(C2) a = a⊕ 0, a⊕ b = b⊕ a and a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ L.
(C3) (

∧
i∈Γ ai)⊕ b =

∧
i∈Γ(ai ⊕ b).

Let (L,≤,⊕) be a complete co-residuated lattice. For each x, y ∈ L, we define

x⊖ y =
∧

{z ∈ L | y ⊕ z ≥ x}.

Then (x⊕ y) ≥ z iff x ≥ (z ⊖ y).

For α ∈ L,A ∈ LX , we denote (α ⊖ A), (α ⊕ A), αX ∈ LX as (α ⊖ A)(x) =
α⊖A(x), (α⊕A)(x) = α⊕A(x), αX(x) = α.

Put n(x) = 1⊖x. The condition n(n(x)) = x for each x ∈ L is called a double
negative law.

Remark 2.1. (1) An infinitely distributive lattice (L,≤,∨,∧,⊕ = ∨, 0, 1) is a
complete co-residuated lattice. In particular, the unit interval ([0, 1],≤,∨,∧,⊕ =
∨, 0, 1) is a complete co-residuated lattice where

x⊖ y =
∧
{z ∈ L | y ∨ z ≥ x}

=

{
0, if y ≥ x,
x, if y ̸≥ x.

Put n(x) = 1⊖ x = 1 for x ̸= 1 and n(1) = 0. Then n(n(x)) = 0 for x ̸= 1 and
n(n(1)) = 1. Hence n does not satisfy a double negative law.

(2) The unit interval with a right-continuous t-conorm ⊕, ([0, 1],≤,⊕), is a
complete co-residuated lattice [23].

(3) ([1,∞],≤,∨,⊕ = ·,∧, 1,∞) is a complete co-residuated lattice where
x⊖ y =

∧
{z ∈ [1,∞] | yz ≥ x}

=

{
1, if y ≥ x,
x
y , if y ̸≥ x.

∞ · a = a · ∞ = ∞, ∀a ∈ [1,∞],∞⊖∞ = 1.

Put n(x) = ∞⊖ x = ∞ for x ̸= ∞ and n(∞) = 1. Then n(n(x)) = 1 for x ̸= ∞
and n(n(∞)) = ∞. Hence n does not satisfy a double negative law.
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(4) ([0,∞],≤,∨,⊕ = +,∧, 0,∞) is a complete co-residuated lattice where

y ⊖ x =
∧
{z ∈ [0,∞] | x+ z ≥ y}

=
∧
{z ∈ [0,∞] | z ≥ −x+ y} = (y − x) ∨ 0,

∞+ a = a+∞ = ∞, ∀a ∈ [0,∞],∞⊖∞ = 0.

Put n(x) = ∞⊖ x = ∞ for x ̸= ∞ and n(∞) = 0. Then n(n(x)) = 0 for x ̸= ∞
and n(n(∞)) = ∞. Hence n does not satisfy a double negative law.

(5) ([0, 1],≤,∨,⊕,∧, 0, 1) is a complete co-residuated lattice where

x⊕ y = (xp + yp)
1
p ∧ 1, 1 ≤ p <∞,

x⊖ y =
∧
{z ∈ [0, 1] | (zp + yp)

1
p ≥ x}

=
∧
{z ∈ [0, 1] | z ≥ (xp − yp)

1
p } = (xp − yp)

1
p ∨ 0,

Put n(x) = 1 ⊖ x = (1 − xp)
1
p for 1 ≤ p < ∞. Then n(n(x)) = x for x ∈ [0, 1].

Hence n satisfies a double negative law.
(6) Let P (X) be the collection of all subsets of X. Then (P (X),⊂,∪,∩,⊕ =

∪, ∅, X) is a complete co-residuated lattice where

A⊖B =
∧
{C ∈ P (X) | B ∪ C ⊃ A}

= A ∩Bc = A−B.

Put n(A) = X ⊖A = Ac for each A ⊂ X. Then n(n(A)) = A. Hence n satisfies
a double negative law.

Lemma 2.2. [11] Let (L,∧,∨,⊕,⊖, 0, 1) be a complete co-residuated lattice.
For each x, y, z, xi, yi ∈ L, we have the following properties.

(1) If y ≤ z, x⊕ y ≤ x⊕ z, y ⊖ x ≤ z ⊖ x and x⊖ z ≤ x⊖ y.
(2) (

∨
i∈Γ xi)⊖ y =

∨
i∈Γ(xi ⊖ y) and x⊖ (

∧
i∈Γ yi) =

∨
i∈Γ(x⊖ yi).

(3) (
∧

i∈Γ xi)⊖ y ≤
∧

i∈Γ(xi ⊖ y)
(4) x⊖ (

∨
i∈Γ yi) ≤

∧
i∈Γ(x⊖ yi).

(5) x⊖ x = 0, x⊖ 0 = x and 0⊖ x = 0. Moreover, x⊖ y = 0 iff x ≤ y.
(6) y ⊕ (x⊖ y) ≥ x, y ≥ x⊖ (x⊖ y) and (x⊖ y)⊕ (y ⊖ z) ≥ x⊖ z.
(7) x⊖ (y ⊕ z) = (x⊖ y)⊖ z = (x⊖ z)⊖ y.
(8) x⊖ y ≥ (x⊕ z)⊖ (y⊕ z), y⊖x ≥ (z⊖x)⊖ (z⊖ y) and (x⊕ y)⊖ (z⊕w) ≤

(x⊖ z)⊕ (y ⊖ w).
(9) x⊕ y = 0 iff x = 0 and y = 0.
(10) (x⊕ y)⊖ z ≤ x⊕ (y ⊖ z) and (x⊖ y)⊕ z ≥ x⊖ (y ⊖ z).
(11) If L satisfies a double negative law and n(x) = 1 ⊖ x, then n(x ⊕ y) =

n(x)⊖ y = n(y)⊖ x and x⊖ y = n(y)⊖ n(x).

Definition 2.3. [11] Let (L,∧,∨,⊕,⊖, 0, 1) be a complete co-residuated lattice.
Let X be a set. A function dX : X ×X → L is called a distance function if it
satisfies the following conditions:

(M1) dX(x, x) = 0 for all x ∈ X,
(M2) dX(x, y)⊕ dX(y, z) ≥ dX(x, z), for all x, y, z ∈ X.
The pair (X, dX) is called a distance space.
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Remark 2.2. [11] (1) We define a distance function dX : X×X → [0,∞]. Then
(X, dX) is called a pseudo-quasi-metric space.

(2) Let (L,∧,∨,⊕,⊖, 0, 1) be a complete co-residuated lattice. Define a func-
tion dL : L × L → L as dL(x, y) = x ⊖ y. By Lemma 2.3 (5) and (6), (L, dL) is
a distance space.

3. Distance spaces, Alexandrov pretopologies and join-meet
operators

In this section, we assume (L,∧,∨,⊕,⊖, 0, 1) is a complete co-residuated lat-
tice with a double negative law n(x) = 1⊖ x.
Definition 3.1. (1) A subset τ ⊂ LX is called an Alexandrov pretopology on X
iff it satisfies the following conditions:

(O1) αX ∈ τ .
(O2) If Ai ∈ τ for all i ∈ I, then

∨
i∈I Ai ∈ τ .

(O3) If A ∈ τ and α ∈ L, then A⊖ α ∈ τ .
(2) A subset η ⊂ LX is called an Alexandrov precotopology on X iff it satisfies

the following conditions:
(CO1) αX ∈ η.
(CO2) If Ai ∈ η for all i ∈ I, then

∧
i∈I Ai ∈ η.

(CO3) If A ∈ η and α ∈ L, then α⊕A ∈ η.
A subset τ ⊂ LX is called an Alexandrov topology on X iff it is both Alexan-

drov pretopology and Alexandrov precotopology on X.
Definition 3.2. A map K : LX → LX is called a meet-join operator if it satisfies
the following conditions:

(K1) K(αX) = n(αX),
(K2) K(A) ≤ n(A), for A ∈ LX ,
(K3) K(A ⊕ α) ≥ K(A) ⊖ α for each α ∈ L,A ∈ LX and K(B) ≤ K(A) for

A ≤ B.
The pair (X,K) is called a meet-join space.

Definition 3.3. A map D : LX → LX is called a join-meet operator if it satisfies
the following conditions:

(D1) D(αX) = n(αX),
(D2) n(A) ≤ D(A), for A ∈ LX ,
(D3) α ⊕ D(A) ≥ D(A ⊖ α) for each α ∈ L,A ∈ LX and D(A) ≥ D(B) for

A ≤ B.
The pair (X,D) is called a join-meet space.

Theorem 3.4. Let KX : LX → LX be a meet-join operator. Then the following
properties hold.

(1) Define τKX
= A ∈ LX | A = KX(n(A))}. Then τKX

is an Alexandrov
pretopology on X.

(2) Define dKX
(x, y) =

∨
A∈LX (KX(n(A))(y) ⊖ KX(n(A))(x)). Then dKX

is
a distance function.
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(3) If dX is a distance function. Define KdX
(A)(y) =

∧
z∈X(dX(z, y) ⊕

n(A)(z)). Then KdX
is a meet-join operator. Moreover, KdKX

(A) ≥ KX(A)
and dKdX

= dX .

Proof. (1) (O1) Since KX(n(αX)) = n(n(αX)) = αX , αX ∈ τKX
.

(O2) IfAi ∈ τKX
for all i ∈ I, by (K2), thenKX(n(

∨
i∈I Ai)) ≤ n(n(

∨
i∈I Ai)) =∨

i∈I Ai. By Lemma 2.3(2), n(
∧

i∈I yi) = 1⊖
∧

i∈I yi =
∨

i∈I(1⊖yi) =
∨

i∈I n(yi).
Put yi = n(xi). Then n(

∧
i∈I n(xi)) =

∨
i∈I n(n(xi)) =

∨
i∈I xi. Thus n(

∨
i∈I xi)

=
∧

i∈I n(xi). By (K3), KX(n(
∨

i∈I Ai)) = KX(
∧

i∈I n(Ai)) ≥
∨

i∈I KX(n(Ai)) =∨
i∈I Ai.
So,

∨
i∈I Ai ∈ τKX

.
(O3) Let A ∈ τKX

and α ∈ L. Then A⊖ α ∈ τKX
from:

A⊖ α ≥ KX(n(A⊖ α)) = KX(n(A)⊕ α)
(by Lemma 2.3(11) and (K3))
≥ KX(n(A))⊖ α = A⊖ α.

(2) (M1) dKX
(x, x) =

∨
A∈LX (KX(n(A))(x)⊖KX(n(A))(x)) = 0.

(M2) For each x, y, z ∈ X,
dKX

(x, z) =
∨

A∈LX (KX(n(A))(z)⊖KX(n(A))(x))

≤
∨

A∈LX

(
(KX(n(A))(z)⊖KX(n(A))(y))

⊕(KX(n(A))(y)⊖KX(n(A))(x))
)

≤
∨

A∈LX (KX(n(A))(z)⊖KX(n(A))(y))
⊕
∨

A∈LX (KX(n(A))(y)⊖KX(n(A))(x))
= dKX

(y, z)⊕ dKX
(x, y).

(3) (K1) Since dX(z, y) ⊕ n(αX)(y) ≥ n(αX)(y), KdX
(αX)(y) ≥ n(αX)(y).

KdX
(αX)(y) =

∧
z∈X(dX(z, y) ⊕ n(A)(z)) ≤ dX(y, y) ⊕ n(A)(y) = n(A)(y).

Hence KdX
(αX) = n(αX).

(K2)KdX
(A)(y) =

∧
z∈X(dX(z, y)⊕n(A)(z)) ≤ dX(y, y)⊕n(A)(y) = n(A)(y).

(K3) If A ≤ B, then n(A) ≥ n(B). Thus KdX
(A) ≥ KdX

(B). Moreover,
KdX

(αX ⊕A) =
∧

z∈X(dX(z, y)⊕ n(αX ⊕A)(z))
=
∧

z∈X(dX(z, y)⊕ (n(A)(z)⊖ α))
( by Lemma 2.3(11))
≥ (
∧

z∈X(dX(z, y)⊕ n(A)(z)))⊖ α = KdX
(A)⊖ α

( by Lemma 2.3(3)).
For A ∈ LX and y ∈ X,

KdKX
(A)(y) =

∧
z∈X(dKX

(z, y)⊕ n(A)(z))

=
∧

z∈X(
∨

B∈LX (KX(n(B))(y)
⊖KX(n(B))(z))⊕ n(A)(z)) (put B = n(A))
≥
∧

z∈X((KX(A)(y)⊖KX(A)(z))⊕ n(A)(z))
(by KX(A) ≤ n(A))
≥
∧

z∈X((KX(A)(y)⊖ n(A)(z))⊕ n(A)(z)) ≥ KX(A)(y)
(by Lemma 2.3(6)).
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Since
∧

z∈X(dX(z, y) ⊕ dX(p, z)) ≥ dX(p, y) from (M2) and
∧

z∈X(dX(z, y) ⊕
dX(p, z)) ≤ dX(y, y)⊕dX(p, y) = dX(p, y),

∧
z∈X(dX(z, y)⊕dX(p, z)) = dX(p, y).

Moreover,
∨

p∈X(dX(p, y)⊖dX(p, x)) ≥ dX(x, y)⊖dX(x, x) = dX(x, y). Since
dX(p, y)⊖ dX(p, x) ≤ dX(x, y),

∨
p∈X(dX(p, y)⊖ dX(p, x)) ≥ dX(x, y).

For x, y ∈ X,

dKdX
(x, y) =

∨
A∈LX (KdX

(n(A))(y)⊖KdX
(n(A))(x))

=
∨

A∈LX (
∧

z∈X(dX(z, y)⊕A(z))⊖
∧

w∈X(dX(w, x)⊕A(w)))
( Put A = dX(p,−) ∈ LX)
≥
∨

p∈X(
∧

z∈X(dX(z, y)⊕ dX(p, z))⊖
∧

w∈X(dX(w, x)⊕ dX(p, w)))

=
∨

p∈X(dX(p, y)⊖ dX(p, x)) = dX(x, y),

dKdX
(x, y) =

∨
A∈LX (KdX

(n(A))(y)⊖KdX
(n(A))(x))

=
∨

A∈LX (
∧

z∈X(dX(z, y)⊕A(z))⊖
∧

w∈X(dX(w, x)⊕A(w)))
≤
∨

A∈LX (
∨

z∈X(dX(z, y)⊕A(z))⊖ (dX(z, x)⊕A(z)))
(by Lemma 2.3(8))
≤
∨

z∈X(dX(z, y)⊖ dX(z, x)) = dX(x, y).

�

Theorem 3.5. Let DX : LX → LX be a join-meet operator. Then the following
properties hold.

(1) Define ηDX
= A ∈ LX | A = DX(n(A))}. Then ηDX

is an Alexandrov
precotopology on X.

(2) Define dDX
(x, y) =

∨
A∈LX (DX(n(A))(y)⊖DX(n(A))(x)). Then dDX

is
a distance function.

(3) If dX is a distance function. Define DdX
(A)(y) =

∨
z∈X(n(A)(z) ⊖

dX(y, z)). Then DdX
is a join-meet operator. Moreover, DdDX

(A) ≤ DX(A)
and dDdX

= dX .

Proof. (1) (CO1) Since DX(n(αX)) = n(n(αX)) = αX , αX ∈ ηDX
.

(CO2) IfAi ∈ ηDX
for all i ∈ I, then

∧
i∈I Ai ≤ DX(n(

∧
i∈I Ai)) = DX(

∨
i∈I n(Ai))

≤
∧

i∈I DX(n(Ai)) =
∧

i∈I Ai. So,
∧

i∈I Ai ∈ ηDX
.

(CO3) Let A ∈ ηDX
and α ∈ L. Then A⊕ α ∈ ηDX

from:

A⊕ α ≤ DX(n(A⊕ α)) = DX(n(A)⊖ α)
≤ DX(n(A))⊕ α = A⊕ α.

(2) It is similarly proved as Theorem 3.4(2).
(3) (D1) and (D2) are easily proved. If A ≤ B, DdX

(A) ≥ DdX
(B). Moreover,

DdX
(A⊖ α) =

∨
z∈X(n(A⊖ α)(z)⊖ dX(y, z))

=
∨

z∈X((n(A)⊕ α)⊖ dX(y, z)) ( by Lemma 2.3(11))
≤
∨

z∈X(α⊕ (n(A)⊖ dX(y, z)) (by Lemma 2.3(10))
≤ α⊕

∨
z∈X((n(A)⊖ dX(y, z)) = α⊕DdX

(A).
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For A ∈ LX and y ∈ X,
DdDX

(A)(y) =
∨

z∈X(n(A)(z)⊖ dKX
(y, z))

=
∨

z∈X(n(A)(z)⊖
∨

A∈LX (DX(n(A))(z)⊖DX(n(A))(y)))
(by DX(n(A)) ≥ n(A))
≤
∨

z∈X(n(A)(z)⊖ (n(A)(z)⊖DX(A)(y))) ≤ DX(A)(y)
(by Lemma 2.3(6)).

For x, y ∈ X,
dDdX

(x, y) =
∨

A∈LX (DdX
(n(A))(y)⊖DdX

(n(A))(x))

=
∨

A∈LX (
∨

z∈X(A(z)⊖ dX(y, z))⊖
∨

w∈X(A(w)⊖ dX(x,w)))
( Put A = dX(p,−) ∈ LX)
≥
∨

p∈X(
∨

z∈X(dX(p, z)⊖ dX(y, z))⊖
∨

w∈X(dX(p, w)⊖ dX(x,w)))

=
∨

p∈X(dX(p, y)⊖ dX(p, x)) = dX(x, y),

dDdX
(x, y) =

∨
A∈LX (DdX

(n(A))(y)⊖DdX
(n(A))(x))

=
∨

A∈LX (
∨

z∈X(A(z)⊖ dX(y, z))⊖
∨

w∈X(A(w)⊖ dX(x,w)))
≤
∨

A∈LX (
∨

z∈X(A(z)⊖ dX(y, z))⊖ (A(z)⊖ dX(x, z)))
(by Lemma 2.3(8))
≤
∨

z∈X(dX(x, z)⊖ dX(y, z)) = dX(x, y).

�
Theorem 3.6. Let (X, τ) be an Alexandrov pretopological space. Then the
following properties hold.

(1) Define Kτ (A) =
∨
{B ∈ τ | B ≤ n(A)}. Then Kτ is a meet-join operator.

(2) Define dτ (x, y) =
∨

A∈τ (A(y)⊖A(x)). Then dτ is a distance function with
Kτdτ

(A) ≥ Kτ (A) and τ ⊂ τdτ
where τdτ

= {B ∈ LX | B(x)⊕ dτ (x, y) ≥ B(y)}.
(3) If τ is an Alexandrov topology on X, then Kτdτ

(A) = Kτ (A) and τ = τdτ
.

Proof. (1) (K1) For each x ∈ X,
Kτ (αX)(x) =

∨
{B ∈ η | B ≤ n(αX)

= n(αX) = n(α)X .

(K2) For each A ∈ LX ,Kτ (A) =
∨
{B ∈ τ | B ≤ n(A)} ≤ n(A).

(K3) For each A,C ∈ LX ,
Kτ (A)⊖ α =

∨
{Bi ∈ τ | Bi ≤ n(A)} ⊖ α

=
∨
{Bi ⊖ α ∈ τ | Bi ≤ n(A)}

≤
∨
{Bi ⊖ α ∈ τ | Bi ⊖ α ≤ n(A)⊖ α = n(A⊕ α)}

≤ Kτ (A⊕ α).

Hence Kτ is a meet-join operator.
(2) We easily prove that dτ is a distance function from:

dτ (x, y)⊕ dτ (y, z)
=
∨

A∈τ (A(y)⊖A(x))⊕
∨

A∈τ (A(z)⊖A(y))
≥
∨

A∈τ ((A(y)⊖A(x))⊕ (A(z)⊖A(y)))
≥
∨

A∈τ (A(z)⊖A(x)) = dτ (x, z).



112 Young-Hee Kim , Yong Chan Kim and Jongsung Choi

ForB ∈ τ , B(x)⊕dτ (x, y) = B(x)⊕
∨

A∈τ (A(y)⊖A(x)) ≥ B(x)⊕(B(y)⊖B(x)) ≥
B(y). Hence B ∈ τdτ

. Moreover Kτ (A) =
∨

i∈Γ{Ai | Ai ≤ A,Ai ∈ τ} ≤
Kτdτ

(A).
(3) If τ is an Alexandrov topology on X, for B ∈ τdτ , B(x) ⊕ dτ (x, y) ≥

B(y) and
∧

x∈X(B(x) ⊕ dτ (x, y)) ≤ B(y) ⊕ dτ (y, y) = B(y). Thus B(y) =∧
x∈X(B(x) ⊕ dτ (x, y)). Since

∨
A∈τ (A(−) ⊖ A(x))) ∈ τ , B =

∧
x∈X(B(x) ⊕

dτ (x,−)) =
∧

x∈X(B(x) ⊕
∨

A∈τ (A(−) ⊖ A(x))) ∈ τ . Hence B ∈ τ . Thus, by
(2), τ = τdτ and Kτdτ

(A) = Kτ (A). �

Theorem 3.7. Let (X, η) be an Alexandrov precotopological space. Define
dη(x, y)
=
∨

A∈η(A(y)⊖A(x)). Then
(1) Define Dη(A) =

∧
{B ∈ η | n(A) ≤ B}. Then Dη is a join-meet operator.

(2) Define dη(x, y) =
∨

A∈η(A(y)⊖A(x)). Then dη is a distance function with
Dηdη

(A) ≤ Dη(A) and η ⊂ ηdη
where ηdη

= {B ∈ LX | B(x)⊕dη(x, y) ≥ B(y)}.
(3) If η is an Alexandrov topology on X, then Dηdη

(A) = Dη(A) and η = ηdη
.

Proof. (1) (D1) For all x ∈ X, we have

Dη(αX)(x) =
∧
{B ∈ η | n(αX) ≤ B}

= n(αX) = n(α)X .

(D2) For each A ∈ LX ,Dη(A) =
∧
{B ∈ η | n(A) ≤ B} ≥ n(A).

(D3) If A ≤ B, then Dη(A) ≥ Dη(B).

Dη(A)⊕ α =
∧
{Bi ∈ η | Bi ≥ n(A)} ⊕ α

=
∧
{Bi ⊕ α ∈ η | Bi ≥ n(A)}

≥
∧
{Bi ⊕ α ∈ η | Bi ⊕ α ≤ n(A)⊕ α = n(A⊖ α)}

≥ Dη(A⊖ α).

Hence Dη is a join-meet operator.
(2) We similarly prove that dη is a distance function from Theorem 3.6(2). For

B ∈ η, B(x)⊕ dη(x, y) = B(x)⊕
∨

A∈η(A(y)⊖A(x)) ≥ B(x)⊕ (B(y)⊖B(x)) ≥
B(y). Hence B ∈ ηdη

. Moreover Dη(A) =
∧

i∈Γ{Ai | A ≤ Ai, Ai ∈ η} ≥
Dηdη

(A).

Since B(y) ≤
∧

x∈X(B(x) ⊕
∨

A∈η(A(y) ⊖ A(x))) ≤ B(y) ⊕
∨

A∈η(A(y) ⊖
A(y)) = B(y), B =

∧
x∈X(B(x)⊕

∨
A∈η(A(−)⊖A(x))).

(3) If η is an Alexandrov topology on X, for B ∈ ηdη , B =
∧

x∈X(B(x) ⊕∨
A∈η(A(−)⊖ A(x))) ∈ η. Hence B ∈ η. Thus, η = ηdη and Dηdη

(A) = Dη(A).
�

Example 3.8. Let X = {x, y, z} and ([0, 1],≤,∨,∧,⊕,⊖, 0, 1) be a complete
co-residuated lattice defined as n(x) = 1− x,

x⊕ y = (x+ y) ∧ 1, x⊖ y = (x− y) ∨ 0.
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(1) Define DX : [0, 1]X → [0, 1]X as

DX(A) =

{
n(αX), ifA = αX ,
(n(A)⊕ 0.1) ∧ supn(A), otherwise.

(D1) and (D2) are easily proved.
(D3) If A ≤ B, then DX(A) ≥ DX(B).

α⊕DX(A) = α⊕ ((n(A)⊕ 0.1) ∧ supn(A))
≥ (n(A⊖ α)⊕ 0.1) ∧ supn(A⊖ α)
≥ (n(A)⊕ α)⊕ 0.1) ∧ supn(A⊖ α)

Put A ∈ [0, 1]X with A(x) = 0.6, A(y) = 0.3, A(z) = 0.5. Then DX(A) =
(n(A) ⊕ 0.1) ∧ supn(A) = (0.5, 0.8, 0.6) ∧ 0.7X = (0.5, 0.7, 0.6). Since ηDX

=
{αX | α ∈ [0, 1]}, DηDX

(A) = 0.7X . Moreover, DηDX
(B) = supn(B) ≥ DX(B)

for each B ∈ LX .
For 0x ∈ LX with 0x(y) = 0, for x = y and 0x(y) = 1,for x ̸= y,

dDX
(x, y) =

∨
A∈LX (DX(A)(y)⊖DX(A)(x))

=

{
0, if x = y,
(0x(y)⊕ 0.1)⊖ (0x(x)⊕ 0.1) = 0.9, if x ̸= y

(2) Define KX : [0, 1]X → [0, 1]X as

KX(A) =

{
n(αX), ifA = αX ,
(n(A)⊖ 0.1) ∨ inf n(A), otherwise.

(K1) and (K2) are easily proved.
(K3) If A ≤ B, then KX(A) ≥ KX(B).

KX(A)⊖ α = ((n(A)⊖ 0.1) ∨ inf n(A))⊖ α
= ((n(A)⊖ 0.1)⊖ α) ∨ (inf n(A)⊖ α)
≤ (n(A⊕ α)⊖ 0.1) ∨ inf n(A⊕ α)
= KX(A⊕ α).

Put A ∈ [0, 1]X with A(x) = 0.6, A(y) = 0.3, A(z) = 0.5. Then KX(A) =
(n(A) ⊖ 0.1) ∨ inf n(A) = (0.3, 0.6, 0.4) ∨ 0.4X = (0.4, 0.6, 0.4). Since τKX

=
{αX | α ∈ [0, 1]}, KτKX

(A) = 0.4X . Moreover, KτDX
(B) = inf n(B) ≤ KX(B)

for each B ∈ LX .
For 0x ∈ LX with 0x(y) = 0, for x = y and 0x(y) = 1,for x ̸= y,

dKX
(x, y) =

∨
A∈LX (KX(A)(y)⊖KX(A)(x))

=

{
0, if x = y,
(0x(y)⊖ 0.1)⊖ (0x(x)⊖ 0.1) = 0.9, if x ̸= y

(3) Define an Alexandrov pretopology
τX = {(A⊖ α) ∨ βX) | α, β ∈ L}.

For B = (0.2, 0.4, 0.3) ∈ [0, 1]X ,
KτX (B) =

∨
{Ai ∈ τX | Ai ≤ n(B)} = 0.6X .
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(4) Define an Alexandrov precotopology
ηX = {(A⊕ α) ∧ βX) | α, β ∈ L}.

For B = (0.2, 0.4, 0.3) ∈ [0, 1]X ,
DηX

(B) =
∧
{Ai ∈ ηX | n(B) ≤ Ai}

= (0.9, 0.6, 0.8) ∧ 0.8X = (0.8, 0.6, 0.8).

Example 3.9. (1) Define maps di : [0, 1] × [0, 1] → [0, 1] for i = 0, 1, 2, 3 as
follows:

d0(x, y) =

{
0, if x = y,
1, if x ̸= y,

d1(x, y) =

{
0, if x ≥ y,
1, if x ̸≥ y,

d2(x, y) =

{
0, if x ≤ y,
1, if x ̸≤ y,

d3(x, y) = 0.

Since KdX
(A)(y) =

∧
x∈[0,1](n(A)(x) ⊕ dX(x, y)) for each A ∈ [0, 1][0,1], we can

obtain
Kd0(A)(y) =

∧
x∈[0,1](n(A)(x)⊕ d0X(x, y)) = n(A)(y),

Kd1(A) =
∧

x≥y n(A)(x),

Kd2(A) =
∧

x≤y n(A)(x),

Kd3(A) =
∧

x∈[0,1] n(A)(x).

τd0 = [0, 1][0,1],
τd1 = {A ∈ [0, 1][0,1] | A(x) ≤ A(y) if x ≤ y},
τd2 = {A ∈ [0, 1][0,1] | A(x) ≥ A(y) if x ≤ y},
τd3 = {αX ∈ [0, 1][0,1] | α ∈ [0, 1]}.

4. Conclusion

In this paper, we investigate between the topological structures on fuzzy sets
and fuzzy join and meet complete lattices with distance spaces in complete co-
residuated lattices.

In the future, as extensions of fuzzy rough sets, by using the concepts of
distance spaces in complete co-residuated lattices, fuzzy concepts, information
systems and decision rules are investigated.
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