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STUDIES ON PROPERTIES AND CHARACTERISTICS OF
TWO NEW TYPES OF q-GENOCCHI POLYNOMIALS†
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Abstract. In this paper, we construct q-cosine and sine Genocchi polyno-
mials using q-analogues of addition, subtraction, and q-trigonometric func-
tion. From these polynomials, we obtain some properties and identities.
We investigate some symmetric properties of q-cosine and sine Genocchi
polynomials. Moreover, we find relations between these polynomials and
others polynomials.
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1. Introduction

We would like to begin by introducing several definitions related to q-numbers
used in this paper(see [1, 3-8, 10, 15, 18]). For any n ∈ N, the q-number can be
defined as follows.

[n]q =
1− qn

1− q
, where q ̸= 1. (1.1)

Definition 1.1. The Gaussian binomial coefficients are defined by[
m
r

]
q

=

{
0 if r > m

(1−qm)(1−qm−1)···(1−qm−r+1)
(1−q)(1−q2)···(1−qr) if r ≤ m,

(1.2)

where m and r are non-negative integers.

For r = 0, the value is 1 since the numerator and the denominator are both
empty products. Like the classical binomial coefficients, the Gaussian binomial
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coefficients are center-symmetric. There are analogues of the binomial formula
and this definition has a number of properties(see [3, 10]).

Definition 1.2. The q-analogues of (x− a)n and (x+ a)n are defined by

(i) (x⊖ a)nq =

{
1 if n = 0

(x− a)(x− qa) · · · (x− qn−1a) if n ≥ 1
,

(ii) (x⊕ a)nq =

{
1 if n = 0

(x+ a)(x+ qa) · · · (x+ qn−1a) if n ≥ 1
, respectively.

(1.3)

Definition 1.3. Let z be any complex numbers with |z| < 1. Two forms of
q-exponential functions can be expressed as

eq(z) =

∞∑
n=0

zn

[n]q!
, Eq(z) =

∞∑
n=0

q(
n
2)

zn

[n]q!
. (1.4)

From Definition 1.3, we note that (1) eq(x)eq(y) = eq(x+ y) if yx = qxy, (2)
eq(x)Eq(−x) = 1, and (3) eq−1(x) = Eq(x).

Definition 1.4. The definition of the q-derivative operator of any function f
follows that

Dqf(x) =
f(x)− f(qx)

(1− q)x
, x ̸= 0, (1.5)

and Dqf(0) = f ′(0).

Definition 1.5. The q-trigonometric functions are

sinq(x) =
eq(ix)− eq(−ix)

2i
, SINq(x) =

Eq(ix)− Eq(−ix)
2i

cosq(x) =
eq(ix) + eq(−ix)

2
, COSq(x) =

Eq(ix) + Eq(−ix)
2

,

(1.6)

where SINq(x) = sinq−1(x),COSq(x) = cosq−1(x).

In various mathematics applications which include number theory, combina-
torial analysis, and other fields, the Bernoulli, Euler, Genocchi, tangent polyno-
mials are widely studied. Acknowledging their significance, many mathemati-
cians are familiar with these numbers and polynomials and it has been studied
for a long time. The previous Definitions and Theorems are also applied to
polynomials and their properties are studied in various ways in combination
with Bernoulli, Euler, Genocchi, and tangent polynomials, which are consid-
ered important(see [2, 9, 11-14, 16-17]). The definition of q-cosine and q-sine
Bernoulli polynomials are as follows:
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Definition 1.6. Let x, y be real numbers. Then, q-cosine Bernoulli polynomials
and q-sine Bernoulli polynomials are defined by:

∞∑
n=0

CBn,q(x, y)
tn

[n]q!
=

t

eq(t)− 1
eq(tx)COSq(ty),

∞∑
n=0

SBn,q(x, y)
tn

[n]q!
=

t

eq(t)− 1
eq(tx)SINq(ty),

(1.7)

respectively.

Recently, in [9], we confirmed the properties of q-cosine Bernoulli polynomials
and q-sine Bernoulli polynomials. The definitions and representative properties
of cosine Euler polynomials and sine Euler polynomials are the following.

Definition 1.7. The generating functions of q-cosine Euler polynomials and
q-sine Euler polynomials are correspondingly defined by

∞∑
n=0

CEn,q(x, y)
tn

[n]q!
=

2

eq(t) + 1
eq(tx)COSq(ty),

∞∑
n=0

SEn,q(x, y)
tn

[n]q!
=

2

eq(t) + 1
eq(tx)SINq(ty).

(1.8)

Based on the above, many studies can confirm various polynomials and their
properties(see [9, 11, 14, 16]).

Definition 1.8. q-Genocchi polynomials are defined by
∞∑

n=0

Gn,q(x)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx). (1.9)

The main aim of this paper is to define the q-cosine Genocchi polynomials
and q-sine Genocchi polynomials. In Section 2, we construct q-Genocchi poly-
nomials combined with q-trigonometric functions and confirm various properties
and identities of these polynomials. Here, we use the properties and exponen-
tial functions associated with the q-number and q-analogues of subtraction and
addition. In Section 3, we find interesting and symmetric properties for q-cosine
Genocchi polynomials and q-sine Genocchi polynomials.

2. Some properties of q-cosine Genocchi, q-sine Genocchi
polynomials

In this section, we construct q-cosine Genocchi polynomials and q-sine Genoc-
chi polynomials using q-trigonometric functions. From these polynomials, we
find some identities and properties. Furthermore, we investigate some relations
between these polynomials and others polynomials.
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Theorem 2.1. Let x, y ∈ R and i =
√
−1. Then we investigate

(i)

∞∑
n=0

Gn,q((x⊕ iy)q) +Gn,q((x⊖ iy)q)t
n

2[n]q!
=

2t

eq(t) + 1
eq(tx)COSq(ty),

(ii)

∞∑
n=0

Gn,q((x⊕ iy)q)−Gn,q((x⊖ iy)q)t
n

2i[n]q!
=

2t

eq(t) + 1
eq(tx)SINq(ty).

(2.1)

Proof. (i) By substituting (x ⊕ iy)q into z in the generating function of q-
Genocchi polynomials and using a property of q-exponential function, eq(t(x ⊕
iy)q) = eq(tx)Eq(ity), we have

∞∑
n=0

Gn,q((x⊕ iy)q)
tn

[n]q!
=

2t

eq(t) + 1
eq(t(x⊕ iy)q)

=
2t

eq(t) + 1
eq(tx) (COSq(ty) + iSINq(ty)) .

(2.2)

In a similar method of (2.2), we obtain
∞∑

n=0

Gn,q((x⊖ iy)q)
tn

[n]q!
=

2t

eq(t) + 1
eq(t(x⊖ iy)q)

=
2t

eq(t) + 1
eq(tx) (COSq(ty)− iSINq(ty)) .

(2.3)

From the Equations (2.2) and (2.3), we find the desired results.
(ii) From (2.2) and (2.3), we also have the desired results. �

Definition 2.2. The q-cosine Genocchi polynomials and q-sine Genocchi poly-
nomials are defined respectively

∞∑
n=0

CGn,q(x, y)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx)COSq(ty),

∞∑
n=0

SGn,q(x, y)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx)SINq(ty).

(2.4)

From the Definition 2.2, we note that CGn,q(x, y) = CGn(x, y) when q → 1.

Remark 2.1. From the Theorem 2.1 and Definition 2.2, we have

(i) 2CGn,q(x, y) = Gn,q((x⊕ iy)q) +Gn,q((x⊖ iy)q),

(ii) 2iSGn,q(x, y) = Gn,q((x⊕ iy)q)−Gn,q((x⊖ iy)q),
(2.5)

where Gn,q(x) are the q-Genocchi polynomials.
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In [9], Ryoo and Kang defined Cn,q(x, y) and Sn,q(x, y) as follows:

∞∑
n=0

Cn,q(x, y)
tn

[n]q!
= eq(tx)COSq(ty),

∞∑
n=0

Sn,q(x, y)
tn

[n]q!
= eq(tx)SINq(ty).

(2.6)

Moreover, we can remark that COSq(x) =
∑∞

n=0(−1)nq(2n−1)n x2n

[2n]q !
and SINq(x)

=
∑∞

n=0(−1)nq(2n+1)n x2n+1

[2n+1]q !
in [8]. From Equation (2.6), we can find some re-

lations between the q-cosine, sine Genocchi polynomials and the Cn,q(x, y) and
Sn,q(x, y).

Theorem 2.3. Let |q| < 1 and k be a nonnegative integer. Then, we derive

(i) CGn,q(x, y) =

[n2 ]∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)ky2kGn−2k,q(x),

(ii) SGn,q(x, y) =

[n−1
2 ]∑

k=0

[
n

2k + 1

]
q

(−1)kq(2k+1)ky2k+1Gn−(2k+1),q(x),

(2.7)

where Gn,q(x) are the q-Genocchi polynomials and [x] is the great integer not
exceeding x.

Proof. (i) By using the power series of COSq(x) and q-Genocchi polynomials
in the generating function of q-cosine Genocchi polynomials, we have

∞∑
n=0

CGn,q(x, y)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx)COSq(ty)

=

∞∑
n=0

Gn,q(x)
tn

[n]q!

∞∑
n=0

(−1)nq(2n−1)ny2n
t2n

[2n]q!

=

∞∑
n=0

(
n∑

k=0

[
n+ k
2k

]
q

(−1)kq(2k−1)ky2kGn−k,q(x)

)
tn+k

[n+ k]q!

=

∞∑
n=0

 [n2 ]∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)ky2kGn−2k,q(x)

 tn

[n]q!
.

(2.8)
From Equation (2.8), we have the required result.
(ii) We obtain the result (ii) using the power series of SINq(x) and q-Genocchi
polynomials in q-sine Genocchi polynomials. �
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Corollary 2.4. Let y = 1 in Theorem 2.3. Then, the following holds

(i) CGn,q(x, 1) =

[n2 ]∑
k=0

[
n
2k

]
q

(−1)kq(2k−1)kGn−2k,q(x),

(ii) SGn,q(x, 1) =

[n−1
2 ]∑

k=0

[
n

2k + 1

]
q

(−1)kq(2k+1)kGn−(2k+1),q(x),

(2.9)

where Gn,q(x) are the q-Genocchi polynomials and [x] is the great integer not
exceeding x.

Theorem 2.5. Let |q| < 1, eq(t) ̸= −1 and x, y ∈ R. Then, we investigate

(i)

n∑
k=0

[
n
k

]
q
CGk,q(x, y) + CGn,q(x, y) = 2[n]qCn−1,q(x, y),

(ii)

n∑
k=0

[
n
k

]
q
SGk,q(x, y) + SGn,q(x, y) = 2[n]qSn−1,q(x, y).

(2.10)

Proof. (i) In the generating function of the q-cosine Genocchi polynomials,
we can consider eq(t) ̸= −1. Then, we have

∞∑
n=0

CGn,q(x, y)
tn

[n]q!

( ∞∑
n=0

tn

[n]q!
+ 1

)
= 2t

∞∑
n=0

Cn,q(x, y)
tn

[n]q!
. (2.11)

The left-hand side in Equation (2.11) is transformed as

∞∑
n=0

CGn,q(x, y)
tn

[n]q!

( ∞∑
n=0

tn

[n]q!
+ 1

)

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q
CGk,q(x, y) + CGn,q(x, y)

)
tn

[n]q!

(2.12)

and the right-hand side of (2.11) is changed as follows.

2t

∞∑
n=0

Cn,q(x, y)
tn

[n]q!
= 2

∞∑
n=0

[n]qCn−1,q(x, y)
tn

[n]q!
. (2.13)

By comparing the coefficients of Equations (2.12) and (2.13), we find the required
result.
(ii) In a similar method as in the proof of (i), we finish the proof of Theorem
2.6 (ii). �
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Corollary 2.6. Consider q → 1 in Theorem 2.6. Then, one holds

(i) nCn−1(x, y) =
1

2

(
n∑

k=0

(
n

k

)
CGk(x, y) + CGn(x, y)

)
,

(ii) nSn−1(x, y) =
1

2

(
n∑

k=0

(
n

k

)
SGk(x, y) + SGn(x, y)

)
,

(2.14)

where CGn(x, y) are the cosine Genocchi polynomials and SGn(x, y) are the sine
Genocchi polynomials in two parameters.

Theorem 2.7. For |q| < 1 and any real numbers x, y, we have

(i) CGn,q(1, y) =

n∑
k=0

[
n
k

]
q

q(
n−k

2 )(−x)n−k (2[k]qCk−1,q(x, y)− CGk,q(x, y)) ,

(ii) SGn,q(1, y) =

n∑
k=0

[
n
k

]
q

q(
n−k

2 )(−x)n−k (2[k]qSk−1,q(x, y)− SGk,q(x, y)) .

(2.15)

Proof. (i) We consider the generating function of q-cosine Genocchi polyno-
mials when x = 1. Then, we have

∞∑
n=0

CGn,q(1, y)
tn

[n]q!
=

2t

eq(t) + 1
(eq(t) + 1− 1)COSq(ty)

= 2tCOSq(ty)−
2t

eq(t) + 1
COSq(ty).

(2.16)

By using eq(x)Eq(−x) = 1 and a property of q-factorial for q-number, the left-
hand side of Equation (2.16) can be transformed as the following.

∞∑
n=0

CGn,q(1, y)
tn

[n]q!

=

(
2teq(tx)COSq(ty)−

2t

eq(t) + 1
eq(tx)COSq(ty)

)
Eq(−tx).

(2.17)

Here, we can note that

2teq(tx)COSq(ty) = 2

∞∑
n=0

Cn,q(x, y)
tn+1

[n]q!
= 2

∞∑
n=0

Cn−1,q(x, y)
tn

[n]q!
. (2.18)



64 Jung Yoog Kang

From Equation (2.18), (2.17) can be rewritten as the following.
∞∑

n=0

CGn,q(1, y)
tn

[n]q!

=

∞∑
n=0

(2[n]qCn−1,q(x, y)− CGn,q(x, y))
tn

[n]q!

∞∑
n=0

q(
n
2)(−x)n tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

q(
n−k

2 )(−x)n−k(2[k]qCk−1,q(x, y)− CGk,q(x, y)

)
tn

[n]q!
.

(2.19)

By comparing the coefficient of both sides in Equation (2.19), we finish the proof
of Theorem 2.7 (i).
(ii) We also take the desired result for q-sine Genocchi polynomials using the
similar method of (i). �

Corollary 2.8. Setting q → 1 in Theorem 2.7, the following holds

(i) CGn(1, y) =

n∑
k=0

(
n

k

)
(−x)n−k (2kCk−1(x, y)− CGk(x, y)) ,

(ii) SGn,q(1, y) =

n∑
k=0

(
n

k

)
(−x)n−k (2kSk−1(x, y)− SGk(x, y)) ,

(2.20)

where CGn(x, y) are the cosine Genocchi polynomials and SGn(x, y) are the sine
Genocchi polynomials.

Theorem 2.9. For a non-negative integer n and |q| < 1, we obtain

(i) CGn,q(x, y) =

n∑
k=0

[
n
k

]
q

Gk,qCn−k,q(x, y),

(ii) SGn,q(x, y) =

n∑
k=0

[
n
k

]
q

Gk,qSn−k,q(x, y),

(2.21)

where Gn,q are the q-Genocchi numbers.

Proof. (i) From the generating function of q-cosine Genocchi polynomials,
there is a relation which is related to q-Genocchi numbers such as

∞∑
n=0

CGn,q(x, y) =

∞∑
n=0

Gn,q
tn

[n]q!

∞∑
n=0

Cn,q(x, y)
tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

Gk,qCn−k,q(x, y)

)
tn

[n]q!
.

(2.22)

From the Equation (2.22), we obtain the result (i).
(ii)We also complete the proof of Theorem 2.9 (ii) using the q-Genocchi numbers
and Sn,q(x, y). �
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Corollary 2.10. When q → 1 in Theorem 2.9, one holds

(i) CGn(x, y) =

n∑
k=0

(
n

k

)
GkCn−k(x, y),

(ii) SGn(x, y) =

n∑
k=0

(
n

k

)
GkSn−k(x, y).

(2.23)

Theorem 2.11. Let |q| < 1 and x, y ∈ R. Then, we obtain

(i)
∂

∂x
CGn,q(x, y) = [n]qCGn−1,q(x, y),

∂

∂x
SGn,q(x, y) = [n]qSGn−1,q(x, y),

(ii)
∂

∂y
CGn,q(x, y) = −[n]qSGn−1,q(x, qy),

∂

∂y
SGn,q(x, y) = [n]qCGn−1,q(x, qy).

(2.24)

Proof. (i) For any real number x, we derive the q-partial derivative for q-cosine
Genocchi polynomials using the q-derivative of the q-cosine function as

∞∑
n=0

∂

∂x
CGn,q(x, y)

tn

[n]q!
=

∞∑
n=0

CGn,q(x, y)
tn+1

[n]q!

=

∞∑
n=0

[n]qCGn−1,q(x, y)
tn

[n]q!
.

(2.25)

Therefore, we obtain the required results.
(ii) In a similar method as in the proof of (i), we also consider the q-derivative
of q-cosine Genocchi polynomials for any real number y such as

∞∑
n=0

∂

∂y
CGn,q(x, y)

tn

[n]q!
= −

∞∑
n=0

SGn,q(x, qy)
tn+1

[n]q!

= −
∞∑

n=0

[n]qSGn−1,q(x, qy)
tn

[n]q!
.

(2.26)

Then, we investigate the results of Theorem 2.11. �
Now, we find some relations between the q-cosine, sine Genocchi polynomials

and others polynomials.

Theorem 2.12. Let x, y ∈ R. Then, we have

(i) CGn,q(x, y) = [n]qCEn−1,q(x, y),

(ii) SGn,q(x, y) = [n]qSEn−1,q(x, y),
(2.27)

where CEn,q(x, y) are the q-cosine Euler polynomials and SEn,q(x, y) are the
q-sine Euler polynomials.
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Proof. (i) From the generating function of q-cosine Genocchi polynomials, we
derive a relation as

∞∑
n=0

CGn,q(x, y)
tn

[n]q!
=

∞∑
n=0

CEn,q(x, y)
tn+1

[n]q!

=

∞∑
n=0

[n]qCEn−1,q(x, y)
tn

[n]q!
.

(2.28)

Therefore, we find the required relation.
(ii) From q-sine Genocchi polynomials, we also have the required relation (ii).
�

Corollary 2.13. Consider q → 1 in Theorem 2.12. Then one holds

(i) CGn(x, y) = nCEn−1(x, y),

(ii) SGn(x, y) = nSEn−1,q(x, y),
(2.29)

where CGn(x, y) are the cosine Genocchi polynomials, SGn(x, y) are the sine
Genocchi polynomials, CEn(x, y) are the cosine Euler polynomials, and SEn(x, y)
are the sine Euler polynomials.

Theorem 2.14. Let x, y ∈ R. Then, we investigate

(i) CGn,q(x, y) + 2CBn,q(x, y) =

n∑
k=0

[
n
k

]
q

(2CBk,q(x, y)− CGk,q(x, y)) ,

(ii) SGn,q(x, y) + 2SBn,q(x, y) =

n∑
k=0

[
n
k

]
q

(2SBk,q(x, y)− SGk,q(x, y)) ,

(2.30)
where CBn,q(x, y) are the q-cosine Bernoulli polynomials and SBn,q(x, y) are the
q-sine Bernoulli polynomials.

Proof. (i) To find a relation between q-cosine Genocchi polynomials and q-
Bernoulli polynomials, we transform the q-cosine Genocchi polynomials as

∞∑
n=0

CGn,q(x, y)
tn

[n]q!
=

2(eq(t)− 1)

eq(t) + 1

∞∑
n=0

CBn,q(x, y)
tn

[n]q!
. (2.31)

When eq(t) ̸= −1, we find

∞∑
n=0

CGn,q(x, y)
tn

[n]q!

( ∞∑
n=0

tn

[n]q!
+ 1

)
= 2

∞∑
n=0

CBn,q(x, y)
tn

[n]q!

( ∞∑
n=0

tn

[n]q!
− 1

)
.

(2.32)
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By using Cauchy’ product in Equation (2.32), we derive

∞∑
n=0

(
n∑

k=0

[
n
k

]
q
CGk,q(x, y) + CGn,q(x, y)

)
tn

[n]q!

= 2

∞∑
n=0

(
n∑

k=0

[
n
k

]
q
CBk,q(x, y)− CBn,q(x, y)

)
tn

[n]q!
.

(2.33)

Therefore, we find the required result.
(ii) By using the same method in q-sine Genocchi polynomials, we obtain the
desired result. �

Corollary 2.15. Consider q → 1 in Theorem 2.14. Then, the following holds

(i) CGn(x, y) + 2CBn(x, y) =

n∑
k=0

(
n

k

)
(2CBk(x, y)− CGk(x, y)) ,

(ii) SGn(x, y) + 2SBn(x, y) =

n∑
k=0

(
n

k

)
(2SBk(x, y)− SGk(x, y)) ,

(2.34)

where CBn(x, y) are the cosine Bernoulli polynomials and SBn(x, y) are the sine
Bernoulli polynomials.

3. Some properties using q-analogues of subtraction and some
symmetric properties

In this section, we introduce some special properties of q-cosine and q-sine
Genocchi polynomials using q-analogues of subtraction and addition. We also
find several symmetric properties of these polynomials taking forms.

Lemma 3.1. Let |q| < 1 and r ∈ R. Then, we have

(i) CGn,q((x⊕ r)q, y) =

n∑
k=0

[
n
k

]
q

q(
n−k

2 )
CGk,q(x, y)r

n−k,

(ii) CGn,q((x⊖ r)q, y) =

n∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
CGk,q(x, y)r

n−k.

(iii) SGn,q((x⊕ r)q, y) =

n∑
k=0

[
n
k

]
q

q(
n−k

2 )
SGk,q(x, y)r

n−k,

(iv) SGn,q((x⊖ r)q, y) =

n∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
SGk,q(x, y)r

n−k.

(3.1)
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Proof. (i) By substituting q-analogues of addition instead of x in the gener-
ating function of q-cosine Genocchi polynomials, we have

∞∑
n=0

CGn,q((x⊕ r)q, y)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx)COSq(ty)Eq(tr)

=

∞∑
n=0

CGn,q(x, y)
tn

[n]q!

∞∑
n=0

q(
n
2)rn

tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

q(
n−k

2 )
CGk,q(x, y)r

n−k

)
tn

[n]q!
.

(3.2)
By using q-exponential functions and comparing the coefficients of both sides in
the Equation (3.2), we derive the required result.
(ii) We can consider the q-analogues of subtraction instead of x in the q-cosine
Genocchi polynomials, we obtain
∞∑

n=0

CGn,q((x⊖ r)q, y)
tn

[n]q!
=

2t

eq(t) + 1
eq((x⊖ r)q, t)COSq(ty)

=

∞∑
n=0

CGn,q(x, y)
tn

[n]q!

∞∑
n=0

q(
n
2)(−r)n tn

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 )
CGk,q(x, y)r

n−k

)
tn

[n]q!
.

(3.3)
From Equation (3.3), we find the desired result.
(iii), (iv) By using the similar manner as in the proof of (i) and (ii) for q-sine
Genocchi polynomials, we find Lemma 3.1 (iii) and (iv), respectively. �
Theorem 3.2. For |q| < q and real numbers r, x, y, we derive
(i) CGn,q((x⊕ r)q, y) + CGn,q((x⊖ r)q, y)

=


2
∑n

k=0

[
n

2k + 1

]
q

q(
n−(2k+1)

2 )
CG2k+1,q(x, y)r

n−(2k+1), if n : odd

2
∑n

k=0

[
n
2k

]
q

q(
n−2k

2 )
CG2k,q(x, y)r

n−2k, if n : even.

(ii) SGn,q((x⊕ r)q, y) + SGn,q((x⊖ r)q, y)

=


2
∑n

k=0

[
n

2k + 1

]
q

q(
n−(2k+1)

2 )
SG2k+1,q(x, y)r

n−(2k+1), if n : odd

2
∑n

k=0

[
n
2k

]
q

q(
n−2k

2 )
SG2k,q(x, y)r

n−2k, if n : even.

(3.4)
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Proof. (i) From Lemma 3.1 (i) and (ii), we investigate

CGn,q((x⊕ r)q, y) + CGn,q((x⊖ r)q, y)

=

n∑
k=0

[
n
k

]
q

q(
n−k

2 )(CGk,q(x, y) + (−1)n−k
CGk,q(x, y))r

n−k.
(3.5)

Therefore, we finish the proof of Theorem 3.2. (i).
(ii) By using Lemma 3.1 (iii) and (iv) for q-sine Genocchi polynomials, we find
the required result. �

Corollary 3.3. Consider r = 1 in Theorem 3.2. Then, the following holds

(i) CGn,q((x⊕ 1)q, y) + CGn,q((x⊖ 1)q, y)

=


2
∑n

k=0

[
n

2k + 1

]
q

q(
n−(2k+1)

2 )
CG2k+1,q(x, y), if n : odd

2
∑n

k=0

[
n
2k

]
q

q(
n−2k

2 )
CG2k,q(x, y), if n : even.

(ii) SGn,q((x⊕ 1)q, y) + SGn,q((x⊖ 1)q, y)

=


2
∑n

k=0

[
n

2k + 1

]
q

q(
n−(2k+1)

2 )
SG2k+1,q(x, y), if n : odd

2
∑n

k=0

[
n
2k

]
q

q(
n−2k

2 )
SG2k,q(x, y), if n : even.

(3.6)

Corollary 3.4. From Lemma 3.1, we have

(i) CGn,q((x⊕ r)q, y) + SGn,q((x⊕ r)q, y)

=

n∑
k=0

[
n
k

]
q

q(
n−k

2 ) (CGk,q(x, y) + SGk,q(x, y)) r
n−k,

(ii) CGn,q((x⊖ r)q, y) + SGn,q((x⊖ r)q, y)

=

n∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k

2 ) (CGk,q(x, y) + SGk,q(x, y)) r
n−k.

(3.7)
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Theorem 3.5. For any integers a, b and real numbers x, y, we derive

(i)

n∑
k=0

[
n
k

]
q

an−kbkCGn−k,q(bx, by)CGk,q(ax, ay)

=

n∑
k=0

[
n
k

]
q

bn−kakCGn−k,q(ax, ay)CGk,q(bx, by),

(ii)

n∑
k=0

[
n
k

]
q

an−kbkSGn−k,q(bx, by)SGk,q(ax, ay)

=

n∑
k=0

[
n
k

]
q

bn−kakSGn−k,q(ax, ay)SGk,q(bx, by).

(3.8)

Proof. (i) To find a symmetric property which is related to q-cosine Genocchi
polynomials, we set up form A as the following.

A :=
4 (teq(abtx)COSq(abty))

2

(eq(at) + 1)(eq(bt) + 1)
. (3.9)

From A, we find the following equation:

A =
2t

eq(at) + 1
eq(abtx)COSq(abty)

2t

eq(bt) + 1
eq(abtx)COSq(abty)

=

∞∑
n=0

CGn,q(bx, by)
(at)n

[n]q!

∞∑
n=0

CGn,q(ax, ay)
(bt)n

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

an−kbkCGn−k,q(bx, by)CGk,q(ax, ay)

)
tn

[n]q!
,

(3.10)

and

A =

∞∑
n=0

CGn,q(ax, ay)
(bt)n

[n]q!

∞∑
n=0

CGn,q(bx, by)
(at)n

[n]q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
q

bn−kakCGn−k,q(ax, ay)CGk,q(bx, by)

)
tn

[n]q!
.

(3.11)

From (3.10) and (3.11), we immediately finish the proof of (i).
(ii) If we use the similar method as in the proof of (i) in q-sine Genocchi poly-
nomials, then we obtain the required result. �
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Corollary 3.6. For q → 1 in Theorem 3.5, one holds

(i)

n∑
k=0

(
n

k

)
an−kbkCGn−k(bx, by)CGk(ax, ay)

=

n∑
k=0

(
n

k

)
bn−kakCGn−k,q(ax, ay)CGk(bx, by),

(ii)

n∑
k=0

(
n

k

)
an−kbkSGn−k,q(bx, by)SGk(ax, ay)

=

n∑
k=0

(
n

k

)
bn−kakSGn−k,q(ax, ay)SGk(bx, by),

(3.12)

where CGn(x, y) are the cosine Genocchi polynomials and SGn(x, y) are the sine
Genocchi polynomials.

Corollary 3.7. Let a = 1 in Theorem 3.5. Then, the following holds

(i)

n∑
k=0

[
n
k

]
q

bkCGn−k,q(bx, by)CGk,q(x, y)

=

n∑
k=0

[
n
k

]
q

bn−k
CGn−k,q(x, y)CGk,q(bx, by),

(ii)

n∑
k=0

[
n
k

]
q

bkSGn−k,q(bx, by)SGk,q(x, y)

=

n∑
k=0

[
n
k

]
q

bn−k
SGn−k,q(x, y)SGk,q(bx, by).

(3.13)
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